Journal of Production Engineering

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut ero labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco.

GUIDE FOR AUTHORS SUBMIT MANUSCRIPT

About

Published: biannually | ISSN 1821-4932 | ISSN (online) 2956-2252
Editor-in-Chief: Aco Antić, Ph.D
Subject Areas: Engineering, Mechanical 

The Journal of Production Engineering (JPE) is an open-access scientific journal that provides a dynamic and comprehensive platform for sharing groundbreaking research. With a strong emphasis on practical applications, JPE publishes studies of direct relevance to industrial practice, manufacturing technology, engineering, management science, and the modeling and optimization of complex processes and systems. JPE is published biannually - June and December.

Category M52 (2024)

Announcements

Current IssueVol. 27 No. 2 (2024)

Published December 26, 2024

##issue.tableOfContents##

Table of Contents

Original Research Article

Comparative analysis of gearbox fault detection using ensemble learning techniques with vibration sensor data
Nurudeen A. Raji, Rafiu O. Kuku, Abdullateef O. Bakare, Medekannu M. Ogunbiyi, Tobiloba I. Morafa
1-9
DOI: https://doi.org/10.24867/JPE-2024-02-001

abstract views: 124 // FULL TEXT ARTICLE (PDF): 0


Manufacturing design and static analysis of a gear shaft
Israel O. Okonokhua, Sándor Bodzás
10-15
DOI: https://doi.org/10.24867/JPE-2024-02-010

abstract views: 55 // FULL TEXT ARTICLE (PDF): 0


Development of Artificial Neural Network models for vibration classification in machining process on Brownfield CNC machining center
Pavle Stepanić, Nedeljko Dučić, Nebojša Stanković
16-20
DOI: https://doi.org/10.24867/JPE-2024-02-016

abstract views: 59 // FULL TEXT ARTICLE (PDF): 0


Preliminary study on the cutting force and shape error in turning of X5CrNi18-10 shafts with small feed
István Sztankovics, El Majdoub Wafae
21-28
DOI: https://doi.org/10.24867/JPE-2024-02-021

abstract views: 28 // FULL TEXT ARTICLE (PDF): 0


Review Article

Impact of cutting parameters on surface roughness in aluminum alloys machining: a review of machine learning models for key parameter identification
Dejan Bajić, Mića Đurđev, Slavica Prvulović, Sanja Stanisavljev, Dragan Ćoćkalo, Luka Đorđević
29-37
DOI: https://doi.org/10.24867/JPE-2024-02-029

abstract views: 80 // FULL TEXT ARTICLE (PDF): 0


View All Issues