Development of Artificial Neural Network models for vibration classification in machining process on Brownfield CNC machining center
Published 2024-09-13
abstract views: 26 // FULL TEXT ARTICLE (PDF): 0
Keywords
- smart maintenance,
- vibration,
- drilling,
- Artificial neural networks
How to Cite
Copyright (c) 2024 Journal of Production Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
This study presents the development of artificial neural network models capable of classifying the type of vibration during the step drilling process. Classification refers to recognizing the nature of vibrations during the machining process and categorizing them into two classes: safe and harmful. The data used in the study were obtained from Bosch and collected during the aforementioned machining process on a four-axis horizontal CNC machining center. Several different architectures of artificial neural networks have been developed, and their performance (with a classification success rate of around 96%) has shown that they can be applied as a highly useful tool in predictive maintenance.
Dimensions Citation Metrics
References
- Wang, K. S., Li, Z., Braaten, J., & Yu, Q. (2015). Interpretation and compensation of backlash error data in machine centers for intelligent predictive maintenance using ANNs. Advances in Manufacturing, 3(1), 97-104. DOI: 10.1007/s40436-015-0107-4
- Sabat, R. S. (2023). Conditional predictive maintenance of electric vehicles from electrical and mechanical faults. International Journal for Multidisciplinary Research, 5(1). DOI: 10.36948/ijfmr.2023.v05i01.1325
- Alves, F., Badikyan, H., Moreira, H. A., Azevedo, J., Moreira, P. M., Romero, L., & Leitão, P. (2020). Deployment of a smart and predictive maintenance system in an industrial case study. IEEE 29th International Symposium on Industrial Electronics (ISIE), 493-498.
- Cavalieri, S., & Salafia, M. G. (2020). A model for predictive maintenance based on Asset Administration Shell. Sensors, 20(21), 6028. DOI: 10.3390/s20216028
- Mohammed, B., Nadia, M., & Mourad, Z. (2022). Multi-criteria analysis of diagnostic and prognostic models for predictive maintenance. E3S Web of Conferences, 01041. DOI: 10.46338/ijetae1022_14
- Noureddine, R., Solvang, W. D., Johannessen, E., & Yu, H. (2020). Proactive learning for intelligent maintenance in industry 4.0. Advanced Manufacturing and Automation IX 9th, 250-257.
- Helgo, M. (2023). Deep learning and machine learning algorithms for enhanced aircraft maintenance and flight data analysis. J. Robotics Spectrum, 1, 90-99.
- Pundir, A., Maheshwari, P., & Prajapati, P. (2022, August). Machine learning-based predictive maintenance model. Proceedings of the 2nd Indian International Conference on Industrial Engineering and Operations Management, 2160-2174.
- Selvaraj, K., & Lakshmanan, S. (2021). The machine learning for predictive maintenance in supply chain management. Journal of Artificial Intelligence and Machine Learning, 1(1), 9-15. DOI: 10.55124/jaim.v1i1.233
- Veloso, B., Ribeiro, R. P., Gama, J., & Pereira, P. M. (2022). The MetroPT dataset for predictive maintenance. Scientific Data, 9(1), 764. DOI: 10.1038/s41597-022-01877-3
- Parpala, R. C., & Iacob, R. (2017). Application of IoT concept on predictive maintenance of industrial equipment. MATEC Web of Conferences, 02008. DOI: 10.1051/matecconf/20178702008
- Martins, J. P. S., Rodrigues, F. M., & Henriques, N. (2020). Modelling system based on machine learning approaches for predictive maintenance applications. KnE Engineering, 857-871. DOI: 10.18502/keg.v5i6.7105
- Adu-Amankwa, K., Attia, A., Janardhanan, M., & Patel, I. (2019). A predictive maintenance cost model for CNC SMEs in the era of Industry 4.0. The International Journal of Advanced Manufacturing Technology, 104(9-12), 3567-3587. DOI: 10.1007/s00170-019-04094-2
- Guerroum, M., Zegrari, M., Masmoudi, M., Berquedich, M., & Elmahjoub, A. (2022). Machine learning techniques for remaining useful life prediction using diagnosis data: A case study of a jaw crusher. International Journal of Emerging Technology and Advanced Engineering, 12(10), 122-135. DOI: 10.46338/ijetae1022_14
- Yan, W., Pin, W., & He, L. (2021). Reliability prediction of CNC machine tool spindle based on optimized cascade feedforward neural network. IEEE Access, 9, 60682-60688. DOI: 10.1109/access.2021.3074505
- Mbilong, P. M., Aarab, Z., Belouadha, F. Z., & Kabbaj, M. I. (2023). Enhancing fault detection in CNC machinery: A deep learning and genetic algorithm approach. Ingénierie des Systèmes d'Information, 28(5). DOI: 10.18280/isi.280525
- Rao, J. (2024). Fault diagnosis of CNC machine tools based on neural network optimization. In Intelligent Computing Technology and Automation, 33-41. DOI: 10.3233/atde231169
- El-Barawany, M., Elminir, H., Elattar, H., & Abdel Hamid, E. (2022). Computer numerical control CNC machine health prediction using multi-domain feature extraction and deep neural network regression. Journal of Engineering Research, 6(5), 7-12. DOI: 10.21608/erjeng.2022.160627.1100
- Feng, Z., Min, X., Jiang, W., & Fan, S. (2023). Study on thermal error modeling for CNC machine tools based on the improved radial basis function neural network. Applied Sciences, 13(9), 5299. DOI: 10.3390/app13095299
- Shibata, R., Hirogaki, T., Aoyama, E., Ogawa, K., & Yamashita, T. (2015). Influence of ball screw equipped with counter-balance mechanism on machine tool vibration in step-drilling process. Manufacturing Science and Technology, 3(5), 266-273. DOI: 10.13189/mst.2015.030512
- Aoyama, E., Hirogaki, T., Ogawa, K., Nojiri, S., & Takeda, Y. (2010). Effect of rapid-feed step-drilling cycle and super-high-speed spindle for high-speed micro drilling in printed wiring boards. Key Engineering Materials, 447, 836-840. DOI: 10.4028/www.scientific.net/kem.447-448.836
- Tnani, M. A., Feil, M., & Diepold, K. (2022). Smart data collection system for brownfield CNC milling machines: A new benchmark dataset for data-driven machine monitoring. Procedia CIRP, 107, 131-136. DOI: 10.1016/j.procir.2022.04.022
- Chen, A. C., Jia, W. K., Hwang, F. J., Liu, G., Song, F., & Pu, L. (2022). Machine learning and deep learning methods for wireless network applications. EURASIP Journal on Wireless Communications and Networking, 2022(1), 115. DOI: 10.1186/s13638-022-02196-2
- Masalimov, K., & Munasypov, R. (2019). Neural networks for diagnostics of metal cutting machine modules. In 7th Scientific Conference on Information Technologies for Intelligent Decision-Making Support (ITIDS 2019), 95-100.
- Okoro, E. E., Alaba, A. O., Sanni, S. E., Ekeinde, E. B., & Dosunmu, A. (2019). Development of an automated drilling fluid selection tool using integral geometric parameters for effective drilling operations. Heliyon, 5(5). DOI: 10.1016/j.heliyon.2019.e01713
- Zafar, T., Kamal, K., Mathavan, S., Hussain, G., Alkahtani, M., Alqahtani, F. M., & Aboudaif, M. K. (2021). A hybrid approach for noise reduction in acoustic signal of machining process using neural networks and ARMA model. Sensors, 21(23), 8023. DOI: 10.3390/s21238023
- Dai, J., & Xie, Q. (2022). Prediction of deviation range of gear autonomous machining relying on failure sign algorithm of firefly neural network. Mobile Information Systems, 2022(1), 5878748. DOI: 10.1155/2022/5878748
- Mei, Y., Sun, C., Li, C., Liu, Y., & Tan, J. (2022). Research on intelligent assembly method of aero-engine multi-stage rotors based on SVM and variable-step AFSA-BP neural network. Advanced Engineering Informatics, 54, 101798. DOI: 10.1016/j.aei.2022.101798