Journal of Production Engineering

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut ero labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco.

GUIDE FOR AUTHORS SUBMIT MANUSCRIPT
Vol. 27 No. 2 (2024)
Review Article

Impact of cutting parameters on surface roughness in aluminum alloys machining: a review of machine learning models for key parameter identification

Dejan Bajić
Technical faculty "Mihajlo Pupin"
Mića Đurđev
Technical faculty "Mihajlo Pupin", Zrenjanin
Slavica Prvulović
Technical faculty "Mihajlo Pupin", Zrenjanin
Sanja Stanisavljev
Technical faculty "Mihajlo Pupin", Zrenjanin
Dragan Ćoćkalo
Technical Faculty "Mihajlo Pupin", University of Novi Sad, Serbia
Luka Đorđević
Technical faculty "Mihajlo Pupin", Zrenjanin

Published 2024-12-20

abstract views: 81 // FULL TEXT ARTICLE (PDF): 0


Keywords

  • Machine learning,
  • Surface roughness,
  • Regression

How to Cite

Bajić, Dejan, Mića Đurđev, Slavica Prvulović, Sanja Stanisavljev, Dragan Ćoćkalo, and Luka Đorđević. 2024. “Impact of Cutting Parameters on Surface Roughness in Aluminum Alloys Machining: A Review of Machine Learning Models for Key Parameter Identification”. Journal of Production Engineering 27 (2):29-37. https://doi.org/10.24867/JPE-2024-02-029.

Abstract

This paper provides a comprehensive review of research on the influence of machining parameters—depth of cut, feed rate, and cutting speed—on surface roughness, with a focus on aluminum alloys. Surface quality in CNC machining is significantly affected by these parameters, with numerous studies highlighting their impact on achieving desired surface roughness. The review analyzes findings from ten studies, emphasizing that feed rate is generally identified as the most influential parameter for surface roughness. While feed rate shows a dominant effect, cutting speed and depth of cut also contribute, though to a lesser extent. The research includes a discussion of various methodologies, including ANOVA, the Taguchi method, and more simple machine learning regression models, which demonstrate strong alignment with experimental results and highlight the effectiveness of advanced regression-based models in predicting surface roughness. The study concludes that optimizing feed rate is crucial for achieving high surface quality values, while cutting speed and depth of cut should be managed appropriately. The findings underscore the importance of machine learning tools in analyzing and optimizing machining parameters, offering practical guidance for CNC machine operators and engineers.

PlumX Metrics

Dimensions Citation Metrics

References

  1. Cerulli, G. (2023). The Basics of Machine Learning. In Fundamentals of Supervised Machine Learning, in Statistics and Computing, p. 1–17, Cham: Springer International Publishing. DOI: 10.1007/978-3-031-41337-7_1.
  2. Zimmermann-Niefield, A., Polson, S., Moreno, C., & Shapiro, R. B. (2020). Youth making machine learning models for gesture-controlled interactive media. In Proceedings of the Interaction Design and Children Conference, p. 63–74, London, United Kingdom: ACM. DOI: 10.1145/3392063.3394438.
  3. Sarkar, D., Bali, R., & Sharma, T. (2018). Machine Learning Basics. In Practical Machine Learning with Python, p. 3–65, Berkeley, CA: Apress. DOI: 10.1007/978-1-4842-3207-1_1.
  4. Carleo, G., et al. (2019). Machine learning and the physical sciences. Reviews of Modern Physics, vol. 91, no. 4, p. 045002. DOI: 10.1103/RevModPhys.91.045002.
  5. Yao, B., & Feng, T. (2018). Machine learning in automotive industry. Advances in Mechanical Engineering, vol. 10, no. 10, p. 168781401880578. DOI: 10.1177/1687814018805787.
  6. Weichert, D., Link, P., Stoll, A., Rüping, S., Ihlenfeldt, S., & Wrobel, S. (2019). A review of machine learning for the optimization of production processes. International Journal of Advanced Manufacturing Technology, vol. 104, no. 5–8, p. 1889–1902. DOI: 10.1007/s00170-019-03988-5.
  7. Soori, M., Arezoo, B., & Dastres, R. (2023). Machine learning and artificial intelligence in CNC machine tools: A review. Sustainable Manufacturing and Service Economics, vol. 2, p. 100009. DOI: 10.1016/j.smse.2023.100009.
  8. Glikson, E., & Woolley, A. W. (2020). Human Trust in Artificial Intelligence: Review of Empirical Research. Academy of Management Annals, vol. 14, no. 2, p. 627–660. DOI: 10.5465/annals.2018.0057.
  9. Marques, L. S., Gresse Von Wangenheim, C., & Hauck, J. C. R. (2020). Teaching Machine Learning in School: A Systematic Mapping of the State of the Art. Informatics in Education, p. 283–321. DOI: 10.15388/infedu.2020.14.
  10. Wang, S. W. K. (2018). Building trust in artificial intelligence, machine learning, and robotics. Cutter Business Technology Journal, vol. 31, no. 2, p. 47–53.
  11. Burkart, N., & Huber, M. F. (2021). A Survey on the Explainability of Supervised Machine Learning. Journal of Artificial Intelligence Research, 70, 245–317. DOI: 10.1613/jair.1.12228.
  12. Kovač, P., Krajny, Z., Soos, L., & Savković, B. (2023). Overview of Material Processing Mechanisms in Unconventional Machining Methods. Journal of Production Engineering, 24(1), p. 1–9. DOI: 10.24867/JPE-2021-01-001.
  13. Dwivedi, Y. K., et al. (2021). Artificial Intelligence (AI): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. International Journal of Information Management, 57, p. 101994. DOI: 10.1016/j.ijinfomgt.2019.08.002.
  14. Kukreja, S., Meghna, S., M. N., & Tyagi, A. K. (2022). Machine Learning: Past, Present and Future. NeuroQuantology, 20(8), p. 4333–4357. DOI: 10.14704/nq.2022.20.8.NQ44468.
  15. Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised Machine Learning: A Brief Primer. Behavior Therapy, 51(5), p. 675–687. DOI: 10.1016/j.beth.2020.05.002.
  16. Martins, R. M., & Von Wangenheim, C. G. (2022). Findings on Teaching Machine Learning in High School: A Ten-Year Systematic Literature Review. Informatics in Education. DOI: 10.15388/infedu.2023.18.
  17. Mehrotra, D. (2019). Basics of Artificial Intelligence & Machine Learning. Notion Press.
  18. Cohen, S. (2021). The Basics of Machine Learning: Strategies and Techniques. In Artificial Intelligence and Deep Learning in Pathology, p. 13–40, Elsevier. DOI: 10.1016/B978-0-323-67538-3.00002-6.
  19. Xu, Y., Zhou, Y., Sekula, P., & Ding, L. (2021). Machine Learning in Construction: From Shallow to Deep Learning. Developments in the Built Environment, 6, p. 100045. DOI: 10.1016/j.dibe.2021.100045.
  20. Chatzilygeroudis, K., Hatzilygeroudis, I., & Perikos, I. (2021). Machine Learning Basics. In Intelligent Computing for Interactive System Design (1st ed., P. Eslambolchilar, A. Komninos, & M. Dunlop, Eds.), p. 143–193. New York, NY, USA: ACM. DOI: 10.1145/3447404.3447414.
  21. Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, vol. 2, no. 3, p. 160. DOI: 10.1007/s42979-021-00592-x.
  22. Jo, T. (2021). Machine Learning Foundations: Supervised, Unsupervised, and Advanced Learning. Cham, Switzerland: Springer.
  23. Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., & Makedon, F. (2020). A Survey on Contrastive Self-Supervised Learning. Technologies, vol. 9, no. 1, p. 2. DOI: 10.3390/technologies9010002.
  24. Liu, X., et al. (2021). Self-Supervised Learning: Generative or Contrastive. IEEE Transactions on Knowledge and Data Engineering. DOI: 10.1109/TKDE.2021.3090866.
  25. Mahesh, B. (2020). Machine Learning Algorithms - A Review. International Journal of Scientific Research (IJSR), vol. 9, no. 1. DOI: 10.21275/ART20203995.
  26. Hu, L., et al. (2021). Supervised Machine Learning Techniques: An Overview with Applications to Banking. International Statistical Review, vol. 89, no. 3, p. 573–604. DOI: 10.1111/insr.12448.
  27. Saravanan, R., & Sujatha, P. (2018). A State of Art Techniques on Machine Learning Algorithms: A Perspective of Supervised Learning Approaches in Data Classification. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), p. 945–949. Madurai, India: IEEE. DOI: 10.1109/ICCONS.2018.8663155.
  28. Roh, Y., Heo, G., & Whang, S. E. (2021). A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective. IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 4, p. 1328–1347. DOI: 10.1109/TKDE.2019.2946162.
  29. Fenza, G., Gallo, M., Loia, V., Orciuoli, F., & Herrera-Viedma, E. (2021). Data Set Quality in Machine Learning: Consistency Measure Based on Group Decision Making. Applied Soft Computing, 106, p. 107366. DOI: 10.1016/j.asoc.2021.107366.
  30. Whang, S. E., & Lee, J.-G. (2020). Data Collection and Quality Challenges for Deep Learning. Proceedings of the VLDB Endowment, vol. 13, no. 12, p. 3429–3432. DOI: 10.14778/3415478.3415562.
  31. Gupta, N., et al. (2021). Data Quality for Machine Learning Tasks. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, p. 4040–4041. Virtual Event Singapore: ACM. DOI: 10.1145/3447548.3470817.
  32. Zhang, Y., Safdar, M., Xie, J., Li, J., Sage, M., & Zhao, Y. F. (2023). A Systematic Review on Data of Additive Manufacturing for Machine Learning Applications: The Data Quality, Type, Preprocessing, and Management. Journal of Intelligent Manufacturing, vol. 34, no. 8, p. 3305–3340. DOI: 10.1007/s10845-022-02017-9.
  33. Sen, P. C., Hajra, M., & Ghosh, M. (2020). Supervised Classification Algorithms in Machine Learning: A Survey and Review. In Emerging Technology in Modelling and Graphics (J. K. Mandal & D. Bhattacharya, Eds.), Advances in Intelligent Systems and Computing, vol. 937, p. 99–111. Singapore: Springer Singapore. DOI: 10.1007/978-981-13-7403-6_11.
  34. Skiera, B., Reiner, J., & Albers, S. (2022). Regression Analysis. In Handbook of Market Research (C. Homburg, M. Klarmann, & A. Vomberg, Eds.), p. 299–327. Cham: Springer International Publishing. DOI: 10.1007/978-3-319-57413-4_17.
  35. Wang, L., Zhao, J., & Mortier, R. (2022). Regression. In OCaml Scientific Computing, Undergraduate Topics in Computer Science, p. 191–218. Cham: Springer International Publishing. DOI: 10.1007/978-3-030-97645-3_10.
  36. Fernández-Delgado, M., Sirsat, M. S., Cernadas, E., Alawadi, S., Barro, S., & Febrero-Bande, M. (2019). An Extensive Experimental Survey of Regression Methods. Neural Networks, vol. 111, p. 11–34. DOI: 10.1016/j.neunet.2018.12.010.
  37. Tchigirinsky, Yu. L., Chigirinskaya, N. V., & Tikhonova, Z. S. (2021). Regression Modeling of Machining Processes. In Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020) (A. A. Radionov & V. R. Gasiyarov, Eds.), Lecture Notes in Mechanical Engineering, p. 1101–1108. Cham: Springer International Publishing. DOI: 10.1007/978-3-030-54817-9_128.
  38. Gunst, R. F., & Mason, R. L. (2018). Regression Analysis and Its Application: A Data-Oriented Approach (1st ed.). CRC Press. DOI: 10.1201/9780203741054.
  39. Stulp, F., & Sigaud, O. (2015). Many Regression Algorithms, One Unified Model: A Review. Neural Networks, vol. 69, p. 60–79. DOI: 10.1016/j.neunet.2015.05.005.
  40. Liu, J., Lu, E., Yi, H., Wang, M., & Ao, P. (2017). A New Surface Roughness Measurement Method Based on a Color Distribution Statistical Matrix. Measurement, vol. 103, p. 165–178. DOI: 10.1016/j.measurement.2017.02.036.
  41. He, C. L., Zong, W. J., & Zhang, J. J. (2018). Influencing Factors and Theoretical Modeling Methods of Surface Roughness in Turning Process: State-of-the-Art. International Journal of Machine Tools and Manufacture, vol. 129, p. 15–26. DOI: 10.1016/j.ijmachtools.2018.02.001.
  42. Asiltürk, İ., & Çunkaş, M. (2011). Modeling and Prediction of Surface Roughness in Turning Operations Using Artificial Neural Network and Multiple Regression Method. Expert Systems with Applications, vol. 38, no. 5, p. 5826–5832. DOI: 10.1016/j.eswa.2010.11.041.
  43. Trung, D. D. (2020). Influence of Cutting Parameters on Surface Roughness during Milling AISI 1045 Steel. Tribology in Industry, vol. 42, no.4, p. 658–665. DOI: 10.24874/ti.969.09.20.11.
  44. Yang, Y., et al. (2019). Research on the Milling Tool Wear and Life Prediction by Establishing an Integrated Predictive Model. Measurement, vol. 145, p. 178–189.
  45. DOI: 10.1016/j.measurement.2019.05.009.
  46. Zheng, G., Xu, R., Cheng, X., Zhao, G., Li, L., & Zhao, J. (2018). Effect of Cutting Parameters on Wear Behavior of Coated Tool and Surface Roughness in High-Speed Turning of 300M. Measurement, 125, 99–108. DOI: 10.1016/j.measurement.2018.04.078.
  47. Li, Y., Zheng, G., Zhang, X., Cheng, X., Yang, X., & Xu, R. (2019). Cutting Force, Tool Wear, and Surface Roughness in High-Speed Milling of High-Strength Steel with Coated Tools. Journal of Mechanical Science and Technology, 33(11), p. 5393–5398. DOI: 10.1007/s12206-019-1033-3.
  48. Pimenov, D., et al. (2019). Effect of the Relative Position of the Face Milling Tool Towards the Workpiece on Machined Surface Roughness and Milling Dynamics. Applied Sciences, vol. 9, p. 842. DOI: 10.3390/app9050842.
  49. Ahilan, C., Kumanan, S., Sivakumaran, N., & Edwin Raja Dhas, J. (2013). Modeling and Prediction of Machining Quality in CNC Turning Process Using Intelligent Hybrid Decision-Making Tools. Applied Soft Computing, vol. 13, p. 1543–1551. DOI: 10.1016/j.asoc.2012.03.071.
  50. Lin, Y.-C., Wu, K.-D., Shih, W.-C., Hsu, P.-K., & Hung, J.-P. (2020). Prediction of Surface Roughness Based on Cutting Parameters and Machining Vibration in End Milling Using Regression Method and Artificial Neural Network. Applied Sciences, vol. 10, no. 11, 3941. DOI: 10.3390/app10113941.
  51. Wu, T. Y., & Lei, K. W. (2019). Prediction of Surface Roughness in Milling Process Using Vibration Signal Analysis and Artificial Neural Network. International Journal of Advanced Manufacturing Technology, vol. 102, p. 305–314. DOI: 10.1007/s00170-018-3176-2.
  52. Zhou, Y., & Xue, W. (2018). Review of Tool Condition Monitoring Methods in Milling Processes. International Journal of Advanced Manufacturing Technology, vol. 96, p. 2509–2523. DOI: 10.1007/s00170-018-1768-5.
  53. Wang, M., Zhou, J., Gao, J., Li, Z., & Li, E. (2020). Milling Tool Wear Prediction Method Based on Deep Learning Under Variable Working Conditions. IEEE Access, vol. 8, p. 140726–140735. DOI: 10.1109/ACCESS.2020.3010378.
  54. İşleyen, Ü. K., & Karamanoğlu, M. (2019). The Influence of Machining Parameters on Surface Roughness of MDF in Milling Operation. BioResources, vol. 14, p. 3266–3277. DOI: 10.15376/biores.14.2.3266-3277.
  55. Patel, G. C. M., Lokare, D., Chate, G. R., Parappagoudar, M. B., Nikhil, R., & Gupta, K. (2020). Analysis and Optimization of Surface Quality While Machining High-Strength Aluminium Alloy. Measurement, vol. 152, p. 107337. DOI: 10.1016/j.measurement.2019.107337.
  56. University of Novi Sad, Faculty of Technical Sciences, Institute for Production Engineering, Serbia, et al. (2018). Artificial Intelligence Approach to Modeling of Cutting Force and Tool Wear Relationships During Dry Machining. Journal of Production Engineering, vol. 21, no. 2, p. 13–18. DOI: 10.24867/JPE-2018-02-013.
  57. Kong, D., Chen, Y., & Li, N. (2018). Gaussian Process Regression for Tool Wear Prediction. Mechanical Systems and Signal Processing, vol. 104, p. 556–574. DOI: 10.1016/j.ymssp.2017.11.021.
  58. University of Novi Sad, Faculty of Technical Sciences, Institute for Production Engineering, Serbia, et al. (2019). The Correlation of Tool Wear Parameters with Machining Process Parameters. Journal of Production Engineering, vol. 22, no. 1, p. 1–4. DOI: 10.24867/JPE-2019-01-001.
  59. College of Business and Technical Education, Doboj, Bosnia and Herzegovina, et al. (2017). Modeling of Cutting Forces in Ball-End Milling Process of Hard (Hardened) Steel by Using Response Surface Methodology. Journal of Production Engineering, vol. 20, no. 2, p. 17–20. DOI: 10.24867/JPE-2017-02-017.
  60. Abdullahu, N. Q. F. (2018). Mathematical Model Determination for Surface Roughness During CNC End Milling Operation on 42CRM04 Hardened Steel. International Journal of Mechanical Engineering and Technology (IJMET), vol. 9, p. 624–632.
  61. Brillinger, M., Wuwer, M., Abdul Hadi, M., & Haas, F. (2021). Energy Prediction for CNC Machining with Machine Learning. CIRP Journal of Manufacturing Science and Technology, vol. 35, p. 715–723. DOI: 10.1016/j.cirpj.2021.07.014.
  62. Ristovska, B., Papazoska, E., & Gecevska, V. (2019). Improving Manufacturing Process by Optimizing Time Parameters. Journal of Production Engineering, vol. 22, no. 1, p. 42–46, DOI: 10.24867/JPE-2019-01-042.
  63. Aghazadeh, F., Tahan, A., & Thomas, M. (2018). Tool Condition Monitoring Using Spectral Subtraction and Convolutional Neural Networks in Milling Process. International Journal of Advanced Manufacturing Technology, vol. 98, p. 3217–3227. DOI: 10.1007/s00170-018-2420-0.
  64. Kovač, P., Savkovic, B., Rodić, D., Gostimirović, M., & Mankova, I. (2018). Adaptive Neuro-Fuzzy Modeling of Thermal Voltage Parameters for Tool Life Assessment in Face Milling. Journal of Production Engineering, vol. 20, no. 1, p. 16–20. DOI: 10.24867/JPE-2017-01-016.
  65. Xiao, M., et al. (2018). Prediction of Surface Roughness and Optimization of Cutting Parameters of Stainless Steel Turning Based on RSM. Mathematical Problems in Engineering, 2018, p. 1–15. DOI: 10.1155/2018/9051084.
  66. Cuong, N. V., & Khanh, N. L. (2022). Improving the Accuracy of Surface Roughness Modeling When Milling 3x13 Steel. Engineering, Technology & Applied Science Research, vol. 12, no. 4, p. 8878–8883. DOI: 10.48084/etasr.5042.
  67. Fountas, N., Aslani, K.-E., Kechagias, J., Kyratsis, P., & Vaxevanidis, N. (2022). Experimental and Statistical Study of Surface Roughness in CNC Slot Milling of AL 7075 Alloy Using Full and Fractional Factorial Design. Tribology in Industry, vol. 44, no. 1, p. 283–293. DOI: 10.24874/ti.1151.07.21.11.
  68. Anh, H. L. H., Tuan, T. K., Quang, N. H., Luan, N. H., Truong, T. M., & Dung, N. T. Q. (2021). Optimization of Milling Process by Taguchi-PSI Method. E3S Web of Conferences, vol. 309, p. 01019. DOI: 10.1051/e3sconf/202130901019.
  69. Hussain, R. A. S., Jahanzaib, M., Asghar, G., & Wasim, A. (2015). Optimization of Surface Roughness for Al Alloy 7075-T in Milling Process. Technical Journal of University of Engineering and Technology UET Taxila Pakistan, vol. 20, no. 2, p. 153–159.
  70. Yeganefar, A., Niknam, S. A., & Asadi, R. (2019). The Use of Support Vector Machine, Neural Network, and Regression Analysis to Predict and Optimize Surface Roughness and Cutting Forces in Milling. International Journal of Advanced Manufacturing Technology, vol. 105, p. 951–965. DOI: 10.1007/s00170-019-04227-7.
  71. Sakthivelu, S., Anandaraj, T., & Selwin, M. (2017). Multi-Objective Optimization of Machining Conditions on Surface Roughness and MRR During CNC End Milling of Aluminium Alloy 7075 Using Taguchi Design of Experiments. Mechanics and Mechanical Engineering, vol. 21, p. 95–103.
  72. Nimase, R. N., & Khodke, P. M. (2015). Effect of Machining Parameters on Surface Roughness of Al-7075 Alloy in End Milling. International Research Journal of Engineering and Technology (IRJET), vol. 2, no. 3, p. 1505–1508.
  73. Nguyen, N.-T. (2020). A Study on Influence of Milling Types and Cutting Conditions on Surface Roughness in Milling of Aluminum Alloy Al6061-T6. Universal Journal of Mechanical Engineering, vol. 8, p. 183–190.
  74. DOI: 10.13189/ujme.2020.080403.
  75. Kumar, M. B., Parameshwaran, R., Deepandurai, K., & Senthil, S. M. (2020). Influence of Milling Parameters on Surface Roughness of Al–SiC–B4C Composites. Transactions of the Indian Institute of Metals, vol. 73, no. 5, p. 1171–1183. DOI: 10.1007/s12666-020-01960-6.
  76. Raza, M. H., Hafeez, F., Zhong, R. Y., & Imran, A. (2020). Investigation of Surface Roughness in Face Milling Processes. International Journal of Advanced Manufacturing Technology, vol. 110, p. 2589–2599. DOI: 10.1007/s00170-020-06188-8.
  77. David, C., Sagris, D., Stergianni, E., Tsiafis, C., & Tsiafis, I. (2018). Experimental Analysis of the Effect of Vibration Phenomena on Workpiece Topomorphy Due to Cutter Runout in End-Milling Process. Machines, vol. 6, p. 27. DOI: 10.3390/machines6030027.
  78. Öztürk, B., & Kara, F. (2020). Calculation and Estimation of Surface Roughness and Energy Consumption in Milling of 6061 Alloy. Advances in Materials Science and Engineering, 2020, p. 1–12. DOI: 10.1155/2020/5687951.
  79. Okokpujie, I. P., Ajayi, O. O., Afolalu, S. A., Abioye, A. A., Salawu, E. Y., & Udo, M. O. (2018). Modeling and Optimization of Surface Roughness in End Milling of Aluminium Using Least Square Approximation Method and Response Surface Methodology. International Journal of Mechanical Engineering and Technology (IJMET), vol. 9, no. 1, p. 587–600.