Impact behavior of kevlar-epoxy composites: the effect of aluminium oxynitride reinforcement
Published 2025-12-15
abstract views: 1 // FULL TEXT ARTICLE (PDF): 0
Keywords
- Kevlar-epoxy composite,
- Aluminium Oxynitride,
- Impact Resistance,
- Crack deflection,
- Nanoparticle reinforcement
- Aerospace applications,
- Damage resistance ...More
How to Cite
Copyright (c) 2025 Journal of Production Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
This study investigates the impact performance of Kevlar–epoxy composites reinforced with aluminium oxynitride (AlON) nanoparticles, aiming to optimize energy absorption and damage resistance. To address gaps in current research, composites with AlON concentrations of 0%, 2%, 5%, and 10% were fabricated using vacuum-assisted resin transfer molding (VARTM). Impact tests conducted in accordance with ASTM D7136 standards evaluated the composites’ response to high-energy impacts. The results demonstrated that the inclusion of AlON significantly enhanced the impact resistance of the composites, with the 5% AlON variant showing a 39% improvement in absorbed energy compared to the unreinforced baseline. This increase in toughness was primarily attributed to crack deflection and bridging mechanisms provided by the well-dispersed AlON particles. However, at 10% AlON, particle agglomeration introduced stress concentrations, leading to reduced performance gains. Comprehensive analysis using scanning electron microscopy (SEM) and ultrasonic C-scan imaging revealed reduced delamination areas, minimized matrix cracking, and improved homogeneity of AlON dispersion in the 5% composite. These findings included a 35% reduction in delamination area compared to the control, underscoring the effectiveness of the 5% AlON reinforcement. Response surface methodology (RSM) further validated that 5% AlON was the optimal reinforcement level, offering the best balance between impact resistance and material stability. Overall, AlON-reinforced Kevlar–epoxy composites—particularly those containing 5% AlON—exhibit strong potential for lightweight, high-impact applications. Future research should investigate their environmental durability under extreme conditions, including thermal cycling and moisture exposure, to ensure long-term performance.
Dimensions Citation Metrics
References
- Reis, P. N. B., Ferreira, J. A. M., Santos, P., Richardson, M. O. W., & Santos, J. B. (2012). Impact response of Kevlar composites with filled epoxy matrix. Composite Structures, 94(12), 3520–3528. https://doi.org/10.1016/j.compstruct.2012.05.025
- Sreejith, M., & Rajeev, R. S. (2021). Fiber reinforced composites for aerospace and sports applications. In Fiber reinforced composites: Constituents, compatibility, perspectives, and applications (pp. 821–859). Woodhead Publishing Series in Composites Science and Engineering. https://doi.org/10.1016/B978-0-12-821090-0
- Sprenger, S. (2020). Nanosilica-toughened epoxy resins. Polymers, 12(8), 1777. https://doi.org/10.3390/polym12081777
- Guo, G., Alam, S., & Peel, L. D. (2022). An investigation of deformation and failure mechanisms of fiber-reinforced composites in layered composite armor. Composite Structures, 281, 115125. https://doi.org/10.1016/j.compstruct.2021.115125
- Yadav, R., Singh, M., Shekhawat, D., Lee, S.-Y., & Park, S.-J. (2023). The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review. Composites Part A: Applied Science and Manufacturing, 175, 107775. https://doi.org/10.1016/j.compositesa.2023.107775
- Gök, D. A., Bayraktar, C., & Hoşkun, M. (2024). A review on processing, mechanical and wear properties of Al matrix composites reinforced with Al₂O₃, SiC, B₄C, and MgO by powder metallurgy method. Journal of Materials Research and Technology, 31, 1132–1150. https://doi.org/10.1016/j.jmrt.2024.06.110
- Reis, P. N. B., Ferreira, J. A. M., & Richardson, M. O. W. (2011). Effect of strain rate on the impact response of Kevlar composites. Composite Structures, 93(2), 659–665. https://doi.org/10.1016/j.compstruct.2010.08.010
- Rashid, A. B., Haque, M., Islam, S. M. M., & Labib, K. M. R. U. (2024). Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications. Heliyon, 10(2), e24692. https://doi.org/10.1016/j.heliyon.2024.e24692
- Singh, D., Dharshan, G. N. V., Akshay, A., Kumar, R. R., Gaur, P., Ganesan, C., Joshua, J. J., & Nisha, M. S. (2022). Investigation of fatigue behavior of Kevlar composites with nano-graphene filled epoxy resin. Materials Today: Proceedings, 62(Part 2), 773–780. https://doi.org/10.1016/j.matpr.2022.03.674
- Khan, F., Hossain, N., Mim, J. J., Rahman, S. M. M., Iqbal, M. J., Billah, M., & Chowdhury, M. A. (2024). Advances of composite materials in automobile applications – A review. Journal of Engineering Research. https://doi.org/10.1016/j.jer.2024.02.017
- Sookay, N. K., von Klemperer, C. J., & Verijenko, V. E. (2003). Environmental testing of advanced epoxy composites. Composite Structures, 62(3–4), 429–433. https://doi.org/10.1016/j.compstruct.2003.09.016
- Protyai, M. I. H., Adib, F. M., Taher, T. I., Karim, M. R., & Rashid, A. B. (2024). Performance evaluation of Kevlar fiber reinforced epoxy composite by depositing graphene/SiC/Al₂O₃ nanoparticles. Hybrid Advances, 6, 100245. https://doi.org/10.1016/j.hybadv.2024.100245
- Zando, R. B., Mesgarnejad, A., Pan, C., Shefelbine, S. J., Karma, A., & Erb, R. M. (2021). Enhanced toughness in ceramic-reinforced polymer composites with herringbone architectures. Composites Science and Technology, 204, 108513. https://doi.org/10.1016/j.compscitech.2020.108513
- Ning, N., Wang, M., Zhou, G., Qiu, Y., & Wei, Y. (2022). Effect of polymer nanoparticle morphology on fracture toughness enhancement of carbon fiber reinforced epoxy composites. Composites Part B: Engineering, 234, 109749. https://doi.org/10.1016/j.compositesb.2022.109749
- Sikarwar, R. S., Velmurugan, R., & Gupta, N. K. (2014). Influence of fiber orientation and thickness on the response of glass/epoxy composites subjected to impact loading. Composites Part B: Engineering, 60, 627–636. https://doi.org/10.1016/j.compositesb.2013.12.023
- Nanoth, R., Jayanarayanan, K., Sarath Kumar, P., Balachandran, M., & Pegoretti, A. (2023). Static and dynamic mechanical properties of hybrid polymer composites: A comprehensive review of experimental, micromechanical, and simulation approaches. Composites Part A: Applied Science and Manufacturing, 174, 107741. https://doi.org/10.1016/j.compositesa.2023.107741
- Bandaru, A. K., Ahmad, S., & Bhatnagar, N. (2017). Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Composites Part A: Applied Science and Manufacturing, 97, 151–165. https://doi.org/10.1016/j.compositesa.2016.12.007
- Zare, Y. (2016). Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Composites Part A: Applied Science and Manufacturing, 84, 158–164. https://doi.org/10.1016/j.compositesa.2016.01.020
- Sukanya, N. M., & Sundaram, S. K. (2022). Ballistic behaviour of nanosilica and rubber reinforced Kevlar/epoxy composite targets. Engineering Failure Analysis, 142, 106845. https://doi.org/10.1016/j.engfailanal.2022.106845
- Zhang, H., Sun, J., Rui, X., & Liu, S. (2023). Delamination damage imaging method of CFRP composite laminate plates based on the sensitive guided wave mode. Composite Structures, 306, 116571. https://doi.org/10.1016/j.compstruct.2022.116571
- Nadondu, B., Surin, P., & Deeying, J. (2022). Multi-objective optimization on mechanical properties of glass-carbon and durian skin fiber reinforced poly(lactic acid) hybrid composites using the extreme mixture design response surface methodology. Case Studies in Construction Materials, 17, e01675. https://doi.org/10.1016/j.cscm.2022.e01675
- Reis, P. N. B., Ferreira, J. A. M., Zhang, Z. Y., Benameur, T., & Richardson, M. O. W. (2013). Impact response of Kevlar composites with nanoclay enhanced epoxy matrix. Composites Part B: Engineering, 46, 7–14. https://doi.org/10.1016/j.compositesb.2012.10.028
- Alsaadi, M., Bulut, M., Erkliğ, A., & Jabbar, A. (2018). Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites. Composites Part B: Engineering, 152, 169–179. https://doi.org/10.1016/j.compositesb.2018.07.015
- Kumar, A., & Kumar, D. (2022). Vacuum assisted resin transfer moulding process review and variability analysis using Taguchi optimization technique. Materials Today: Proceedings, 50(Part 5), 1472–1479. https://doi.org/10.1016/j.matpr.2021.09.055
- Windey, R., AhmadvashAghbash, S., Soete, J., Swolfs, Y., & Wevers, M. (2023). Ultrasonication optimisation and microstructural characterisation for 3D nanoparticle dispersion in thermoplastic and thermosetting polymers. Composites Part B: Engineering, 264, 110920. https://doi.org/10.1016/j.compositesb.2023.110920
- Seid, A. M., & Adimass, S. A. (2024). Review on the impact behavior of natural fiber epoxy-based composites. Heliyon, 10(20), e39116. https://doi.org/10.1016/j.heliyon.2024.e39116
- Pingulkar, H., Mache, A., Munde, Y., & Siva, I. (2021). A comprehensive review on drop weight impact characteristics of bast natural fiber reinforced polymer composites. Materials Today: Proceedings, 44(Part 5), 3872–3880. https://doi.org/10.1016/j.matpr.2020.12.925
- Quaresimin, M., Ricotta, M., Martello, L., & Mian, S. (2013). Energy absorption in composite laminates under impact loading. Composites Part B: Engineering, 44(1), 133–140. https://doi.org/10.1016/j.compositesb.2012.06.020
- Wang, K., Xu, C., Gao, B., Song, L., & Meng, S. (2024). Analysis of the fracture behavior and mechanism of PIP-C/SiC composites at high temperatures. Composite Structures, 348, 118491. https://doi.org/10.1016/j.compstruct.2024.118491
- Yang, H., Yang, L., Yang, Z., Shan, Y., Gu, H., Ma, J., Zeng, X., Tian, T., Ma, S., & Wu, Z. (2023). Ultrasonic detection methods for mechanical characterization and damage diagnosis of advanced composite materials: A review. Composite Structures, 324, 117554. https://doi.org/10.1016/j.compstruct.2023.117554
- Rostamiyan, Y., Fereidoon, A., Mashhadzadeh, A. H., Rezaei Ashtiyani, M., & Salmankhani, A. (2015). Using response surface methodology for modeling and optimizing tensile and impact strength properties of fiber orientated quaternary hybrid nanocomposite. Composites Part B: Engineering, 69, 304–316. https://doi.org/10.1016/j.compositesb.2014.09.031
- Adamu, M., Rahman, M. R., & Hamdan, S. (2019). Formulation optimization and characterization of bamboo/polyvinyl alcohol/clay nanocomposite by response surface methodology. Composites Part B: Engineering, 176, 107297. https://doi.org/10.1016/j.compositesb.2019.107297
- Sharma, H., Kumar, A., Rana, S., Sahoo, N. G., Jamil, M., Kumar, R., Sharma, S., Li, C., Eldin, S. M., & Abbas, M. (2023). Critical review on advancements on the fiber-reinforced composites: Role of fiber/matrix modification on the performance of the fibrous composites. Journal of Materials Research and Technology, 26, 2975–3002. https://doi.org/10.1016/j.jmrt.2023.08.036
- Vachon, P.-L., Brailovski, V., & Terriault, P. (2013). Impact-induced damage and damage propagation under flexural load in TiNi and Kevlar-stitched carbon/epoxy laminates. Composite Structures, 100, 424–435. https://doi.org/10.1016/j.compstruct.2013.01.011
- Zare, Y., & Rhee, K. Y. (2017). Development of a model for tensile strength of polymer nanocomposites assuming filler aggregation and interphase regions. Composites Part B: Engineering, 114, 364–372. https://doi.org/10.1016/j.compositesb.2017.01.055
- Caminero, M. A., García-Moreno, I., Rodríguez, G. P., & Chacón, J. M. (2019). Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites. Composites Part B: Engineering, 165, 131–142. https://doi.org/10.1016/j.compositesb.2018.11.091
- Zhang, G., Liu, Y., Lv, Z., Wang, J., Zhang, W., & Wu, Y. (2021). Research on impact resistance of ceramic matrix composites. Composite Structures, 268, 113977. https://doi.org/10.1016/j.compstruct.2021.113977
- Li, Y., Wang, N., & Zhou, M. (2021). High speed crack propagation characteristics of functionally graded brittle materials under ultra-high loading rate. Thin-Walled Structures, 161, 107397. https://doi.org/10.1016/j.tws.2020.107397
- Goud, B. N., Sura, S., Aravind, P., Lal, B. J., Sanskruti, K., & Pavan, C. (2022). An experimental study on mechanical properties of Kevlar composite for aircraft structural applications. Materials Today: Proceedings, 64(Part 1), 909–916. https://doi.org/10.1016/j.matpr.2022.06.053
- Akindoyo, J. O., Beg, M. D. H., Ghazali, S., Heim, H. P., Feldmann, M., & Mariatti, M. (2019). Oxidative induction and performance of oil palm fiber reinforced polypropylene composites – Effects of coupling agent and UV stabilizer. Composites Part A: Applied Science and Manufacturing, 125, 105577. https://doi.org/10.1016/j.compositesa.2019.105577
- Hartwig, G., Hübner, R., Knaak, S., & Pannkoke, C. (1998). Fatigue behaviour of composites. Cryogenics, 38(1), 75–78. https://doi.org/10.1016/S0011-2275(97)00113-6
- Ghazanfari, H., Blais, C., Gariépy, M., Savoie, S., Schulz, R., & Alamdari, H. (2020). Improving wear resistance of metal matrix composites using reinforcing particles in two length-scales: Fe₃Al/TiC composites. Surface and Coatings Technology, 386, 125502. https://doi.org/10.1016/j.surfcoat.2020.125502
- Liu, P., Xu, L., Li, J., Peng, J., & Jiao, Z. (2024). Advanced science and technology of polymer matrix nanomaterials. Materials, 17(2), 461. https://doi.org/10.3390/ma17020461
- Lin, L.-Y., Lee, J.-H., Hong, C.-E., Yoo, G.-H., & Advani, S. G. (2006). Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM). Composites Science and Technology, 66(13), 2116–2125. https://doi.org/10.1016/j.compscitech.2005.12.025
- Mansor, M. R., Fadzullah, S. H. S. M., & Nurfaizey, A. H. (2021). Life cycle assessment (LCA) analysis of composite products in automotive applications. In Biocomposite and synthetic composites for automotive applications (pp. 147–172). Woodhead Publishing Series in Composites Science and Engineering. https://doi.org/10.1016/B978-0-12-820559-4.00005-5
- Guo, K., Ren, Y., Han, G., Xie, T., & Jiang, H. (2025). Hygrothermal aging and durability prediction of 3D-printed hybrid fiber composites with continuous carbon/Kevlar-fiber and short carbon-fiber. Engineering Failure Analysis, 167(Part A), 108958. https://doi.org/10.1016/j.engfailanal.2024.108958
- Zhu, X., Chen, W., Liu, L., Xu, K., Luo, G., & Zhao, Z. (2023). Experimental investigation on high-velocity impact damage and compression after impact behavior of 2D and 3D textile composites. Composite Structures, 303, 116256. https://doi.org/10.1016/j.compstruct.2022.116256
- Sarfraz, M. S., Hong, H., & Kim, S. S. (2021). Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study. Composite Structures, 266, 113864. https://doi.org/10.1016/j.compstruct.2021.113864
- Campos, A. A. de, Henriques, E., & Magee, C. L. (2022). Technological improvement rates and recent innovation trajectories in automated advanced composites manufacturing technologies: A patent-based analysis. Composites Part B: Engineering, 238, 109888. https://doi.org/10.1016/j.compositesb.2022.109888
