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Abstract: In this paper, the principles of a metaheuristic algorithm based on tunicate swarm behavior are shown. 
The Tunicate Swarm Algorithm (TSA for short) was used for solving problems in applied mechanics (speed reducer, 
cantilever beam and three-dimensional beam optimization). In the end, a comparison of results obtained by TSA and 
results obtained by other methods is given. 
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Primena metaheurističkog algoritma roja plastaša za rešavanje problema primenjene mehanike. U ovom radu 
su izloženi principi rešavanja metaheurističkog algoritma zasnovanog na ponašanju roja plaštaša.Primenom 
algoritma roja plaštaša (TSA) rešeni su problemi u okviru primenjene mehanike (optimizacija jednostepenog 
reduktora, konzolne grede i trodimenzionalnog nosača). Na kraju rada će biti prikazani rezultati dobijeni metodom 
TSA u odnosu na prethodno dobijene rezultate sa drugim metodama. 
Ključne reči: metaheuristika, plaštaši, algoritam, mehanika. 
 
1. INTRODUCTION  

 
Most engineering problems can be formulated as 

optimization problems. To solve optimization problems, 
different methods have been studied in mathematical 
programming, operations research, etc. 

The classification of metaheuristic algorithms [4, 6, 
7, 8, 9, 10] is shown in figure 1. 
 

 
Fig. 1. Classification of metaheuristic algorithms 

 
 In this paper, the Tunicate swarm algorithm is used 
to solve the following engineering problems. 
 The first problem to be solved is speed reducer 
optimization, having the goal of minimizing reducer 
weight in accordance with bending stress constraints of 
gear teeth, surface stresses, transverse deflections of 
shafts and stresses in shafts. This problem was first 
analyzed and solved by Coello using GA [1]. 
 The second engineering problem is cantilever beam 
optmization, where minimal weight that fulfills the 
constraints is sought after. Gandomi has solved this 
problem using the Cuckoo Search Algorithm (CSA) [2]. 

The last engineering problem that will be considered 
in this paper is optimization of a cantilever beam. The 
goal of this optimization is to minimize cross-section 
heights for each beam element. Miodragovic used FA 
algorithm to solve this problem [3]. 
 
2. TUNICATE SWARM ALGORITHM 
 

Tunicates, commonly called sea squirts, are a group 
of marine animals that spend most of their lives attached 
to docks, rocks or the undersides of boats. The name, 
"tunicate" comes from the firm, but flexible body 
covering, called a tunic. They have the shape of a small 
barrel, and have two openings, called siphons, enabling 
water to stream through them so that they can feed on 
planktons. The tunicate moves through the ocean by jet 
propulsion of water through the siphons. Tunicate is 
only animal to move around the ocean with such fluid 
jet like propulsion. Tunicates are often found at depth of 
500–800 m and migrate upwards in the upper layer of 
surface water at night. 

In the Tunicate Swarm Algorithm, tunicates are in 
search of food source. The food source is indicated by 
the best search agent, while the tunicates seeking the 
food source are all other search agents. The jet 
propulsion behavior must satisfy three conditions: 

1. Avoiding conflicts between search agents 
2. Movement towards the best neighbor 
3. Converging towards the best search agent 
 

In order to avoid conflicts between search agents, the 
following model is applied: 
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2 3G c c F  
 

                                                        (2) 

12F c 


                                                                   (3) 

 min 1 max minM P c P P   


                                  (4) 

where A


-new agent position, G


- gravity force, M


-

social forces, F


- water flow advection, 1 2 3, ,c c c - 

random numbers in range  0,1 , min max,P P - initial and 

subordinate speeds for social interaction. 

Usually, the values for min max,P P  are 1 and 4, 

respectively. 
To avoid the conflict between neighbors, the search 
agents move towards the direction of the best neighbor. 
 

 pPD FS rand P x  
 

                                   (5) 

where PD


- distance between the food source and 

search agent, FS


- position of food source, rand - 

random number in range  0,1 ,  pP x


- position of 

tunicate. 
The search agents move towards the food source using 
the following equation: 
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Where  'pP x


 is the updated position of the search 

agent with respect to the food source. In order to 
simulate the swarm behavior, the first two optimal best 
solutions are recorded, and all the other solutions update 
their position with respect to those positions. This is 
done using the following equation: 
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                        (7) 

The TSA consists of following steps: 

Step 1: Initialize the tunicate population pP


. 

Step 2: Choose the initial parameters and maximum 
number of iterations. 
Step 3: Calculate the fitness value of each search agent. 
Step 4: After computing the fitness value, the best 
search agent is explored in the given search space. 
Step 5: Update the position of each search agent using 

the equation for  1pP x 


. 

Step 6: Adjust the updated search agent which goes 
beyond the boundary in a given search space. 
Step 7: Compute the updated search agent fitness value. 
If there is a better solution than the previous optimal 

solution, then update pP . 

Step 8: If the stopping criterion is satisfied, then the 
algorithm stops. Otherwise, repeat the Steps 5–8. 
Step 9: Return the best optimal solution which is 
obtained so far. 

3.   EXPERIMENTAL ENGINEERING 
EXAMPLES FOR OPTIMIZATION 

 
This chapter will present certain examples of 

engineering problems, such as: optimization of speed 
reducer, cantilever beam and three dimensional  beam. 
The basis of the problem, the objective function, variable 
parameters that should be found as well as the 
constraints that should be respected will be shown.  

The goal of speed reducer optimization is minimizing 
the reducer weight whilst fulfilling all the defined 
constraints. 
In Figure 2 a schematic view of speed reducer is shown. 
 

 

Fig. 2. Speed reducer design problem 

Project variables for the speed reducer problem are: 
the width between the shafts (x1), the module of the 
teeth (x2), the number of teeth in the pinion (x3), the 
length of the first shaft between the bearings (x4), the  
length  of  the  second  shaft  between  the bearings (x5), 
the diameter of the first shaft (x6) and the diameter of 
the second shaft (x7). 
Goal function to be minimized is defined as: 
 
     
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subject to the following constraints: 
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In Figure 4 a schematic view of cantilever beam is 
shown.  
 

 
Fig. 4 . Cantilever beam design problem 

 
As seen in Figure , the cantilever beam consists of five 
hollow, box shaped bearings with a square shaped 
frame. Project variables are lengths of the five 
squares(x1,x2,x3.x4,x5,) which make up the cantilever 
beam. 
Objective function to be minimized, as defined in [5]: 

   1 2 3 4 50,6224 ,f x x x x x x    


      (21) 

Whilst the only constraint for this problem being: 

  3 3 3 3 3
1 2 3 4 5

61 27 19 7 1
1 0,g x

x x x x x
      


     (22) 

1 2 3 4 50,01 , , , , 100,x x x x x                          (23) 

The last problem consists of minimizing cross-
section heights of all elements of a cantilever beam, 
which is shown in Figure 3 .  

 
Fig. 3. Three dimensional beam design problem 
 
A vertical shift of point A is defined in advance, having 
a specified upper limit. The beam is under continual 
load (q1, q2) on horizontal parts of the beam, as well as 
horizontal force F, which affects the vertical part of the 
beam.  
Goal function to be minimized is defined as: 

  1 2 30.8 0.8 ,f x x x  X                               (24) 

subject to the following constraints: 
 

   
3 3 3

3 3 3
1 2 3
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x x x

     
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 

X    (25) 

10.1 0.9,x    

20.1 0.9,x                                                       (26) 

30.1 0.9,x   
 
4. OPTIMIZATION RESULTS 
 

In this section, the results obtained by using TSA 
algorithm on previously defined engineering problems 
is given. 
A detailed display of the results obtained by TSA and a 
comparison with several results obtained by other 
methods, for the problem of speed reducer, three 
dimensional beam and cantilever beam are shown in 
Table 1,2 ,3. 
 

Variables GWO[4] GOA[5] 
 

WCA[6] 
 

TSA 

x1 3.502 3.5 3.5 3.505 
x2 0.7 0.7 0.7 0.7 
x3 17 17 17 17 
x4 7.333 7.3 7.3 7.3 
x5 7.8 7.8 7.715 7.8 
x6 3.351 3.350 3.350 3.352 
x7 5.288 5.287 5.286 5.301 

f(x) 2998.299 2996.964 2994.471 3007.327
Table 1. Comparison of results for the speed reducer 
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Variables ALO[7]  
 

GOA[5] 
 

MMA[8] TSA 

x1 6.018 6.011 6.010 5.973 
x2 5.311 5.312 5.300 5.258 
x3 4.488 4.483 4.490 4.514 
x4 3.497 3.502 3.490 3.529 
x5 2.158 2.163 2.150 2.203 

f(x) 1.339 1.339 1.340 1.340 
Table 2. Comparison of results for the cantilever beam 

 
Variables ANSYS[9] 

 
GOA[7] 

 
FA[3] TSA 

x1 0.80458 0.80453 0.89071 0.8041
x2 0.44054 0.56995 0.56197 0.5686
x3 0.51398 0.34588 0.32444 0.3480

f(x) 1.4618 1.4903 1.4900 1.4903
Table 3. Comparison of results for the three dimensional 

beam 
 

5. CONCLUSION 
 

This paper deals with the  TSA optimization 
algorithm and applies it to a few engineering design 
examples: speed reducer,  cantilever beam, and three 
dimensional beam. 

The  obtained  results  were  compared  to  latest  
papers published in SCI list journals.     

This  algorithm  was  used  to  obtain  optimal  or  
near-optimal   results,   as   shown   in   the   examples.   
Further developing  of  this  algorithm  can  be  used  to  
redefine  and upgrade this method, as to gain better 
results.  
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