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Abstract: In this paper a damping rate analysis was performed on the cantilever beam and loaded with an 
additional mass at the free end. The experimentally obtained results for bending damping vibration of the cantilever 
have been analyzed. The analysis gives the dependence of the damping factor, measured as the relation of the two 
adjacent amplitudes, from the moment of inertia, all in a non-dimensional form. It was found that there is an 
influence of additional mass on the internal damping coefficient for different inertia moment of the cantilever. 
Key words: bending damping vibration, damping factor,internal damping coefficient,  non-dimensional analysis. 
 
Uticaj dodatne mase konzolnog nosača na karakteristike savojnih prigušenih vibracija. U radu je rađena 
analiza stepena prigušenja kod konzolnog nosača sa i bez dodatne mase na slobodnom kraju. Analizirani su 
eksperimentalno dobijeni rezultati za savojne prigušene vibracije konzolnog nosača. Analiza daje zavisnosti faktora 
prigušenja od koeficijenta unutrašnjeg prigušenja u bezdimenzionalnom obliku. Utvrđeno je da postoji uticaj 
dodatne mase na koeficijent utrašnjeg prigušenja  za različite  momente inercije konzolnog nosača.  
Ključne reči: savojne prigušene vibracije, faktor prigušenja, koeficijent unutrašnjeg prigušenja, bezdimenziona 
analiza. 
 
1. INTRODUCTION 
 
 Damping is a phenomenon that, to some extent, 
accompanies vibration. Meanwhile, the mechanical 
energy in the material or system is scattered in the 
environment as an irreversible process.Inner damping in 
the material is most commonly caused as a result of 
internal reorganization in the structure of materials, such 
as molecular dislocation, and tension changes at the 
grain boundariesas a result of cyclic deformation.  
For internal damping in the material, it can be said that 
to a large extent it depends on the material and 
geometry of the structure. Inner damping often can have 
a hysteresis character [1, 2, 3, 4]. If the damping factor 
is relatively small, which is generally the case with 
internal damping in mechanical structures, the 
assumption about viscous damping is usually assumed 
by Voigt's setting [4, 5, 6, 7]. This means that the 
damping forces are proportional to the relative 
velocities of the material particles [8]. The damping 
model defined in this way is linear in nature. 
The damping effect on the vibration of a particular 
mechanical system is reflected in the decrease in the 
amplitude of oscillation in the case of free damped 
vibrations. This influence is usually defined in the 
theory of vibration through an appropriate damping 
factor that shows the rate of decrease of the oscillation 
amplitude in function of the frequency or oscillation 
period [9]. In this paper, the bending damping vibration 
of the cantilever with and without  additional mass at 
the free end is analyzed, in order to determine the mass 
impact on the internal friction coefficient [10, 11]. 
 
 
 

2. DAMPING ANALYSIS 
 
2.1. Damping factor 
 Figure 1 shows an oscillatory single - degree - of - 
freedom system, which consists of a mass, a spring and 
a dumper. An analysis of the influence parameters on 
the amplitude decreasing character can be performed  
on the given system. 
 

 
Fig 1. Schematic of a oscillatory single-degree-of- 

freedom system 
 
Considering the structural system shown in Figure 1, 
where m is the mass of the moving object, k the elastic 
stiffness coefficient and  η the viscous damping 
coefficient, the dynamic motion equation (1) of the 
system in Figure has the form: 
 0 kxxxm                        (1) 

Assuming the solution of equation (1) is in the form of 
an exponential function, it may be written as: 

     teAx p
t cos0                    (2) 

where ωp is the frequency of dumped vibration and α - a 
phase shift that depends on the initial conditions. 
As it Figure 2 shows, the amplitude of damped systems 
in equation (2)decays exponentially over time. 
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Fig. 2. The time response of an oscillatory single-    

degree - of - freedom system 
 
 Based on the equation (2), the ratio between two 
adjacent amplitudes at the beginning and end of one 
cycle can be written as: 
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Logarithmation of the expression (3) gives the 
logarithmic decrement of the attenuation 
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and by dividing the logarithmic decrement with T, the 
followingis obtained:  
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where δ is the parameter indicating the free vibration 
damping measure, in the literature known as the 
damping factor [9]. 
As the basis for determining the degree of damping, the 
values of the measured time response of free damped 
vibrations are used.  
Using this method, the degree of damping is determined 
by changing the oscillation amplitude in time.In this 
case, we are starting from the assumption that the 
damping in the structure, or system, can be treated as 
viscous. Amplitude of free damped vibrations in a 
single-degree-of- freedom system with viscous 
attenuation (Fig. 2), is changing in time according to the 
following exponential law : 

teAtA  0)(    (6) 

where je A0 is the initial amplitude of the oscillation, 
and is the attenuation factor. 
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Fig. 3. 1Reduction of amplitude in viscous damped system with one degree of freedom 
 
 The value of the damping factor  can be determined 
using the ratio of two adjacent amplitude Ai at the 
beginning and Ai + 1 at the end of the period (Figure 3). 
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If the oscillation amplitude changes according to the 
exponential law given by the equation (6), the 
attenuation factor will have a constant value regardless 
of the choice of adjacent amplitudes Ai and Ai + 1 in the 
equation (7). The exponential curve, however, 
represents a theoretical assumption and the change of 
the oscillation amplitude in a real system can deviate 
more or less from the equation (6) since real attenuation 
changes over time. Consequently, it is recommended, 
instead of one period, to choose a longer interval of n 

period and the attenuation factor can be calcuated based 
on the amplitude ratio Ai and Ai + n (Figure 3). 
 
In this case, the damping factor is calculated as: 
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In this paper, the attenuation factor values for the 
measured experimental results are calculated on the 
basis of the equation (8) where n is the order of 100. 
The damping factor can be written as: 
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Where pT is the period of free damped vibrations in a 

non-dimensional form given by expression: 
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 By combining the equations (8), (9) and (10), the 
relationship between the attenuation factor in the 
dimensional and the non-dimensional form is obtained 

 
E

L
  ,   (11) 

or,respectively: 
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 Dependencies are represented in a non-dimensional 
form (indicated by the line above the symbol). The non-
dimensional damping factor and the oscillation period, 
as well as the non-dimensional moment of inertia, 
provide a simpler analysis of the required dependencies. 
Measurements on cantilevers of certain thickness and 
different lengths, give inertia moments in a non-
dimensional form independent of the cantilever width. 
[9]. 
 

3. RESULTS ANALYSIS 
 
 The measurements were made on inox cantilevers of 
different dimensions with and without additional mass 
at the free end. The measurement sample scheme and 
the metering method using the metering strips are 
shown in Figure 4. 
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Fig. 4. Schematic of the measuring specimen, 

positioning of the measuring tape and the 
stimulus

 
Fig. 5. Dependence of the damping coefficient of internal  damping with and without additional mass 
 
 In order to determine the internal damping on each 
sample, several measurements were made, with the 
effective length of the beam being varied. Thus, for 
each beam, vibrational behavior of the beam is 
measured for different values of the non-dimensional 
moment of inertia defined as: 
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where L is the lenght and h- thickness of the beam. The 
non-dimensional inertion moment, which, as seen from 
equation (13), depends only on the length and thickness 
but not on the beams width, is the main geometrical 
characteristic of the beam.In this way, the influence of 
the geometrical characteristics of the beam on internal 
damping is to be examined. Each measurement for a 
given beam length was repeated several times in order 
to determine the accuracy or sensitivity of the 

measurement. 
 Measured damping factors δ are used to determine 
the internal damping coefficient µ in the material in the 
case of free damped bending vibrations of the elastic 
structures. The internal damping coefficient was 
introduced as a parameter in the damping model in the 
material, assuming that the damping force, which occurs 
as a result of material deformation, is proportional to the 
local velocity deformation rate. In accordance with this 
hypothesis, the equilibrium of motion of the free 
damped bending vibrations of the Euler-Bernoulli beam 
in the non-dimensional form is given by equation [9]: 
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(14)  

 The values of the internal damping coefficient μ are 
calculated by the inverse method [10, 11]. The equation 
(14) was solved numerically by using the finite element 
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method to reproduce the console response obtained 
experientially for different beam configurations and for 
the initial and boundary conditions. 
 Based on the results obtained in Figure 5, the loss of 
the internal damping coefficient results for the 
measurements carried out with the additional mass is 
visible. It is also possible to determine the value 
deviation of the non-dimensional friction coefficient in 
the case of an additional mass in comparison to the non-
mass case. 
 
4. CONCLUSION 
 
 Comparing the values of the internal damping 
coefficient  obtained for the measurement of the 
banding vibrations of the different values of inertia 
moments in the inoculum cantilever, the following can 
be concluded: 
 Measuring of the  amplitude reduction in case of an 

unbarbed console, gives the internal damping 
coefficient whose value is in ranges from 0.25 to 
0.59. It can be said that the values are moving in a 
narrow range, and the changes are expected because 
the internal damping coefficient is expressed 
numerically, based on experimentally obtained 
damping factor values. 

 Measuring of the amplitude reduction in the case of 
a loaded console with an additional mass at the free 
end, gives the internal damping coefficient value in 
range from 0.98 to 2.48, which is obviously a 
deviation of the result compared to the unbalanced 
console and the range of values is very wide. 
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