
 
http://doi.org/10.24867/JPE-2018-02-013 

13 

 
JPE (2018) Vol.21 (2)                     Original Scientific  Paper 

Kovač, P., Savković, B., Rodić, D., Mankova, I. 
 

ARTIFICIAL INTELIGENCE APPROACHE TO MODELING OF CUTTING FORCE 
AND TOOL WEAR RELATIONSHIPS DURING DRY MACHINING 

Received: 02 June 2018 / Accepted: 15 September 2018 

Abstract: In the paper numerical and experimental study for different cutting conditions according planning of 
experiment was carried out. Contribution was made during dry face milling process what contributes to 
sustainability of manufacturing processes. Cutting force components and parameters of tool wear versus time were 
pointed out. It was observed that cutting force components increase with time and/or tool wear. The relationships 
for cutting force components versus cutting depth, feed and tool wear parameters were expressed by regression 
analyse and artificial neural network.  
Key words: cutting force, tool wear, experimental dry study machining, neural network, regression analyse. 
 
Modeliranje zavisnosti sila rezanja i habanja alata pomoću veštačke inteligencije pri suvoj obradi. U radu je 
sprovedeno numeričko i eksperimentalno istraživanje za različite uslove rezanja prema planu eksperimenta. Dobit 
rada je prikazana tokom procesa suvog čeonog glodanja što doprinosi održivosti proizvodnih procesa. Istaknute su 
komponente sila rezanja i parametri habanja alata u odnosu na proteklo vreme obrade. Uočeno je da se 
komponente sila rezanja povećavaju sa vremenom odnosno habanjem alata. Odnosi komponenti sila rezanja sa 
dubinom rezanja, pomakom i parametarom habanja alata su obrađeni preko regresione analize odnosno veštačke 
neuronske mreže.  
Ključne reči: sile rezanja, habanje alata, eksperimentalna suva obrada, neuronska mreža, regresiona analiza. 
 
1. INTRODUCTION 
 
 Cutting fluids have a direct influence on the 
environment and in recent times are being questioned in 
the light of ecological and economic manufacture. The 
criterion of minimization of cutting fluids use makes it’s 
important; as range from 7 – 17 % of manufacturing 
costs can be attributed to the cutting fluids. 
Consequently, it is interesting for researches to develop 
sustainable manufacturing processes like dry machining 
[1, 2, 3]. 
 A dry cutting process must be designed to minimize 
the amount of heat flowing into the workpiece. This 
may be achieved by minimizing the cutting forces and 
also by influencing the heat distribution. Cutting forces 
can be reduced by positive cutting-edge geometries. 
The introduction of dry machining necessitates 
measures to compensate for the primary functions of the 
fluid, cooling, lubricating, chip transport and adhesive 
interaction between tool and workpiece 4. 
 Tool wear is of great significance in manufacturing 
because it effects the quality of the components, tool life 
and machining costs. For this reason, many papers on 
tool wear can be recognise in literature. Many of them 
are mainly based on empirical models 5, experimental 
studies 6 and only few regards the simulation of tool 
wear 7. 
 The purpose of work [8] was to study the influence 
of the tool entering angle on the stability of the process 
and on tool life based on a time and frequency domain 
analysis of the cutting forces. 
 The work [9] utilizes the mechanistic modeling 
approach for predicting cutting forces and simulating 

the milling process of fiber-reinforced polymers. Model 
predictions were compared with experimental data and 
were found to be in good agreement. 
 This study develops a combined numerical and 
experimental approach based on response surface 
methodology suggested by authors 10. For 
experimental study, series of tests have been performed 
during concerning the case dry milling operation. 
 
2. CUTTING FORCE MODELLING 
 
 For cutting force components presentation of 
Kienzle-Victor relationship, which is based on unit 
cutting force k11 and is used very often: 
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where b h  is chip cross section and i  1 2 3, ,  
 If tool wear taken in to consideration equation (1) is 
extended with parameter l which represent cutting 
length: 
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where is unit cutting force determined for cutting length 
l = 1 m  

  k k b mm h mm l mi i111 1 1 1   , ,          (3) 

Constants Ciw   and Cil depend of work material and 
cutting conditions 11, 12.   
 For reasons of economy, tool life tests in a face and 
end milling operation are often made with single tooth 
cutters. It is possible to use the results of these tests for 



 

14 

multi-tool cutters if the radial and axial throw is very 
small (  0,002 mm). This is valid for cutting force and 
tool wear. According to this, in the paper experiments 
were made with single tooth cutter. Cutting tests 
demonstrate that the predictive model of the cutting force 
components has good correlation to the cutting conditions 
and actual tool flank wear. 
 In the mathematical model was taken width of flank 
wear land VB as the most important tool wear 
parameter which is the easiest to measure. 
In the paper the artificial neural network and 3 factorial 
experimental design for cutting force relationships 
determination was used. Based on the investigation 
cutting force is a function of cutting conditions and 
cutting time: 

  F f s a ti z 1( , , )                                                  (4)  

 Any of tool wear parameter is function of cutting 
conditions and cutting time 

 W f s a ti z 2 ( , )                                                  (5) 

 When form equation (4) cutting time is put in 
equation (5) relationships for cutting force components 
versus cutting conditions and chosen parameter of tool 
wear can be predicted 

  F f s a Wi z i 3( , , )                                             (6) 

 In the paper relationships for cutting force 
components were predicted in the form: 

  F C s a VBi i z
x y zi i i                                      (7) 

 Face milling process particularity like multi tooth 
that simultaneously cutting and difference in chip cross 
section that one tooth cut influenced development of 

variety of models for cutting force calculation. Variation 
in chip cross section gives difference in intensity of 
cutting forces and thermal load of single tooth. 
 
3. EXPERIMENTAL APPROACH 
 
 For measurement of cutting force components, tool 
wear parameters, measuring were arranged. Cutting 
forces were sensed using the Kistler 3-axes piezoelectric 
force dynamometer (type 9257A). The dynamometer 
signals are then processed to make them suitable for 
computer capture. This is achieved via charge amplifier 
and an analogue to digital (A/D) converter. The output 
electric charges (in pC) delivered from the measuring 
platform are converted by Kistler multi-channel charge 
amplifier (type 5001) into proportional voltages. 
Simultaneously, data acquisition and A/D conversion 
depend on ED 428 card. The ED 428 multifunction 
board can be used for analogue input, analogue output, 
and digital input/output and counting applications. It has 
16 single-ended or 8 differential analogue input 
channels and provides analogue input gains of 1, 10 or 
100. The board has jumper-selectable input ranges of 
±5V, ±10V, 0-5V and 0-10V. Measurement was 
supported by computer and adequate software. 
 Work material was steel C 1730 (AISI 1060). The 
bar of this steel (100 x 120 x 600 mm3) was fixed on 
two Kistler piezoelectric platforms for measuring 
cutting force components in three directions as it is 
shown in Fig. 1. Cutting tests were performed on a 14-
kW vertical milling machine without coolant. A face 
milling cutter of 125 mm diameter, with the cemented 
carbide P 25 inserts SPAN 12 03 ER with 8-th tooth 
positions was used, but cutting tests were performed 
with a single tooth.  

 

 
Fig. 1 Experimental arrangement 

 
The cutting tool wear parameters were measured on a 
tool microscope when cutting was interrupted. The 
measured values of cutting forces and tool wear 

parameters were finally stored and processed by the PC. 
All functional relationships and graphs were made 
processing the data by appropriate software. 
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 The experiment was carried out for different 
combinations of feed (sz) per tooth, depth of cut (a) and 
width od flank wear land WB, according to the 3-
factorial planning of experiment [10] and artificial 
neural network methodology [13]. The width of cut was 
B=100 mm and with central position of cutting tool 
refer to the workpiece. 
 
3.1 Neural network methodology 
 The basic architecture of  a Neural Network 
typically  consists of an input function, which can take 
the form  of binary, continuous or normalized data: a 
processing  architecture which consis t of transfer 
function description, summation function, and relative 
learning strategy: a method for identifying and learning 
from past errors in estimates: and finally a mechanism 
for feeding error corrections back into the network [14]. 
Figure 2 shows the schedule of data that is used for 
network training, validation or test data. 
 

 
Fig. 2. Percentage distribution of data in the creation of 

a neural network 
 

 A two-layer feed-forward network with sigmoid 
hidden neurons and linear output neurons (fitnet), can fit 
multi-dimensional mapping problems arbitrarily well, 
given consistent data and enough neurons in its hidden 
layer.  
 The network are trained with Levenberg-Marquardt 
backpropagation algorithm (trainlm), unless there is not 
enough memory, in which case scaled conjugate 

gradient backpropagation (trainscg) will be used.  
 Elected as Levenberg-Marquardt, back propagation 
networks. This algorithm typically requires more memory 
but less time. Training automatically stops when 
generalization stops improving, as indicated by an increase 
in the mean square error of the validation samples. 
 The architecture of the de signed network comprises 
three inputs parameter and three output parameter at a 
time, and a single hidden layer of six neurons. With the 
help of back propagation training data set (Input 
parameter related to output parameters) is set to utilize 
to train the neural network. Three input parameter and 
three output parameter are considered. The selected 
input parameters should be easily variable and can be 
easily changed by the operator, Figure 3. 
 

 
Fig. 3. The window created by a neural network 
 
4.  EXPERIMENTAL RESULTS AND 

DISCUSSION 
 
 The results of the experimental investigation are 
presented in a graphical form. In Fig. 4 to 6  cutting 
force components Fx, Fy and Fz width of flank wear 

land VB, depth of crater wear KT and width of crater 
KB versus cutting time, for selected cutting conditions 
are presented. 
 Cutting forces components in investigated range 
change due to varying cutting conditions and on-going 
wear of cutting tool. From the graphs can be seen that 
cutting force components increase versus the cutting 
time and/or tool wear and this time progress is similar 
like tool wear curves. 
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Fig. 4. Cutting force components and parameters of tool wear versus time 
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Fig. 5. Cutting force components and parameters of tool wear versus time 
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Fig. 6. Cutting force components and parameters of tool wear versus time 

 
 The time progression of the investigated cutting 
force components can be divided into three distinctive 
stages. The first is initial stage during which a very 
rapid increase occurs. The second or normal stage 
occurs generally vary at a constant tool wear rate. The 
final stage of time progression often happens rapidly 
with a greater possibility of tool failure 
 The effect of feed per tooth can be seen in Fig. 7. It 
can be noticed that when feed increases, tool life 
decreases until cutting force components increase. 
 The effect of the depth of cut can be seen in Fig. 8. 
When the depth of cut during cutting increase cutting 
force components significantly increase. 
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Fig. 7. Cutting forces versus feed per tooth 
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Fig. 8. Cutting forces versus depth of cut 
 
 The effect of width of flank wear land on 
components of cutting force is visible on Figure 9. The 
effect of width of crater wear on components of cutting 
force is visible on Figure 10. The effect of width of 
crater depth wear on components of cutting force is 
visible on Figure 11. 
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Fig. 9. Cutting forces versus width of flank wear land  
 
 In Table 1. for different cutting conditions (constant 
cutting speed v=2.95 m/sec) according factorial 
experimental plan and the cutting force components 
(measured and estimated values and NN), and width of 
flank wear land are shown. 
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Fig. 10. Cutting forces versus width of crater 
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Fig. 11. Cutting forces versus crater depth 
 
 In Table 2. constants in cutting force components 
models with feed, depth of cut and width of flank wear 
land VB are shown. 
 

Fi = C sx ay VBz      (10) 
 C x y z 

Fx 2701.77 0.735 0.847 0.182 
Fy 1923.20 0.616 0.870 0.208 
Fz 1511.56 0.442 0.340 0.509 

Table 2. Constants in cutting force models with speed, 
depth of cut and VB  

 

Measured, N Estimated, N Neural network, N 
No. 

Feed 
s 

mm/tool 

Depth 
a 

mm 

Wear 
VB 
mm Fx F y F z Fx F y F z Fx F y F z 

1 0.142 1.5 0.18 685 590 290 664 575 305 691.4 585.9 291.8 
2 0.351 1.5 0.18 1370 1080 430 1291 1003 456 1387.7 1065.7 440.2 
3 0.223 0.67 0.18 490 370 240 467 376 284 378.7 392.8 326.6 
4 0.223 3.37 0.18 1890 1440 460 1837 1535 492 1895.5 1484.9 478.8 
5 0.223 1.5 0.08 820 650 260 798 540 247 739.6 577.4 268.6 
6 0.223 1.5 0.40 1070 880 600 1069 897 561 1075.3 877.0 604.1 
7 0.223 1.5 0.18 920 760 350 925 760 373 928.3 756.5 349.1 
8 0.145 1.55 0.185 730 630 300 664 575 305 699.6 574.5 296.7 
9 0.355 1.55 0.185 1380 1050 450 1291 1003 456 1393.3 1042.1 446.7 

10 0.228 0.69 0.185 475 340 300 467 376 284 409.2 413.0 327.5 
11 0.228 3.3 0.185 1900 1450 470 1837 1535 492 1900.4 1449.9 470.7 
12 0.228 1.55 0.085 800 640 280 798 540 247 812.7 642.5 279.9 
13 0.228 1.55 0.405 1100 925 625 1069 897 561 1104.5 926.1 621.1 
14 0.228 1.55 0.185 930 750 335 925 760 373 1010.9 817.8 372.0 

Table 1. Cutting conditions, width of flank wear land and cutting forces measured and estimated and NN model 
values
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 The sensors for adaptive control of milling process 
can be developed based on these relationships’ 
equations (8), (9) what agree with 1, 8. 
 The regression plot of the ANN for cutting force is 
shown  in  figure 12. The  regression  plots display the 
network outputs with respect to targets for training. 
From this plot, the value of the regression coefficient is 
found to be more than 99.9% which strongly  justifies  
the acceptability in the prediction capability of the 
models. In case of the dry ANN model, the regression 
coefficient has a higher value; hence, it can be 
concluded that this model is accurate.   
Figure 12 shows graphic coefficients of regression for 
training, test and validation data. 
 

 
Fig. 12.  Coefficient of Regression (plotregression) 
 
5. CONCLUSIONS  
 
 Based on upper presented next conclusion can be 
drown: 
 Time progression of the cutting force components is 

similar to the time progression of tool wear. 
 Strong correlation relationships for the cutting force 

components versus cutting conditions and the width 
of flank wear land VB are determined during dry 
milling. 

 Investigated cutting force components relationships 
can be used for indirect tool wear monitoring. 

 
6. REFERENCES 
 
[1]  Weinert, I. Inasaki, J.W. Sutherland, T. 

Wakabayashi, 2004, Dry Machining and 
Minimum Quantity Lubrication, Annals of the 
CIRP, Vol. 53/2, p 511-538. 

[2] G. Byrne, D. Dornfeld, B. Denkena (2003) 
Advancing Cutting Technology, Annals of the 
CIRP, Vol. 52/2, p 483-507. 

[3] Rahman, M., Kumar, A.S., Salam, M.U., 2002, 
Experimental Evaluation on the Effect of Minimal 
Quantities of Lubricant in Milling, International 
Journal of Machine Tools and Manufacture, 
42/5:539- 547. 

[4] F Pusavac, J. Kopac (2009) Achieving and 
implementation of sustainability principles in 
machining processes, Advances in production 
Engineering & management 4, 3, ISSN 1854-
6250, 151-160. 

[5] Kishawy HA, Kannan S, Balazinski M (2005) 
Analytical Modeling of Tool Wear Progression 
During Turning Particulate Reinforced Metal 
Matrix Composites. Annals of CIRP 54(1):55–58. 

[6] Astakhov VP (2004) The Assessment of Cutting 
Tool Wear. International Journal of Machine 
Tools & Manufacture 44:637–647. 

[7] A. Attanasio a, E. Ceretti, S. Rizzuti b, D. 
Umbrello b, F. Micari, 3D finite element analysis 
of tool wear in machining, CIRP Annals - 
Manufacturing Technology 57 (2008) 61–64. 

[8] A. I. S. Antonialli, A. E. Diniz, R. Pederiva, 
Vibration analysis of cutting force in titanium 
alloy milling International Journal of Machine 
Tools & Manufacture 50 (2010) 65–74. 

[9] J. Sheikh-Ahmad, J. Twomey, D. Kalla, P. 
Lodhia, 2007, Multiple regression and committee 
neural network force prediction models in milling 
FRP, Machining Science and Technology, 
11:391–412. 

[10] Kovač P.: Process modelling–factorial design of 
experiments (in Serbian), faculty of Technical 
science, Novi Sad, 2006, p 159. 

[11] Altintas, Y., Engin, S., Generalized Modeling of 
Mechanics and Dynamics of Milling Cutters, 
Annals of the CIRP, 50/1:25-30. 

[12] H KAMM (1977) Beitrag zur Optimierung des 
beim Messerkopfstirnfräsen. Dissertation 
University of Karlsruhe. 

[13] Kovač, P., Rodić, D., Pucovski, V., Mankova, I., 
Savkovic, B., Gostimirović, M. A review of 
artificial intelligence approaches applied in 
intelligent processes. Journal of Production 
Engineering, 2012, Vol 15, No1, pp1-6. 

[14] Patowari, P. K., P. Saha, and P. Mishra,  Artificial 
neural network model in surface modification by 
EDM using tungsten–copper powder metallurgy 
sintered electrodes. The International Journal of 
Advanced Manufacturing Technology, 2010. 
51(5-8): p. 627-638.  

 
ACKNOWLEDGMENT  
This paper is the result of the research within the project 
TR 35015 financed by the Ministry of Science  and 
Technological Development of the Republic of  Serbia 
and Billateral project Serbia-Slovakia  
 
Authors: 1Professor Pavel Kovac PhD, 1Assist. 
Professor Borislav Savkovic PhD, 1MSc Dragan 
Rodic, 2Professor Ildiko Mankova PhD. 
1University of Novi Sad, Faculty of Technical Sciences, 
Institute for Production Engineering, Trg Dositeja 
Obradovica 6, 21000 Novi Sad, Serbia, Phone.: +381 21 
450-366, Fax: +381 21 454-495. 
2Technical University of Košice, Faculty of Mechanical 
Engineering, Deptartment of Manufacturing 
Technology and Materials, Mäsiarska 74, 040 01 
Košice. 
E-mail: pkovac@uns.ac.rs, savkovic@uns.ac.rs,  
  rodicdr@uns.ac.rs, ildiko.mankova@tuke.sk 


