
Multi-objective Optimization Framework for Energy 
Efficiency and Production Scheduling in Smart 
Manufacturing Using Reinforcement Learning and 
Digital Twin Technology Integration   

Manufacturing facilities face concurrent challenges of maximizing production efficiency 
while reducing energy consumption and environmental impact. Traditional scheduling ap-
proaches typically optimize for either production or energy metrics independently, creating 
a fragmented optimization landscape. This research develops and validates a multi-objective 
optimization framework integrating reinforcement learning with digital twin technology to 
simultaneously balance production efficiency and energy consumption in smart manufac-
turing environments. The research implemented detailed digital twins of three manufactur-
ing facilities in Uzbekistan using Siemens Tecnomatix, integrating real-time data from 387 
IoT sensors. A custom-developed deep reinforcement learning algorithm utilizing Proxi-
mal Policy Optimization was trained on 18 months of historical data. The framework em-
ployed weighted multi-objective functions balancing production, energy, and quality metrics, 
with validation through A/B testing across 93 production runs. Implementation achieved 
22.7% reduction in energy consumption while maintaining production output within 1.2% 
of baseline capacity. Peak power demand decreased by 27.9%, reducing energy costs by 
19.1%. Product quality metrics improved by 6.9% due to optimized machine utilization. 
The reinforcement learning algorithm demonstrated 89.8% accuracy in predicting energy 
consumption patterns and achieved convergence 76% faster than conventional optimization 
approaches. The integrated digital twin-reinforcement learning approach effectively balances 
energy efficiency and production requirements, creating pathways for sustainable manufac-
turing without compromising operational performance.
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1. Introduction

Manufacturing industries face escalating pressure 
to enhance operational efficiency while simultaneous-
ly reducing environmental impacts, particularly en-
ergy consumption, as documented by Nazir et al. [1] 
and Rashid et al. [2]. This dual challenge has become 
increasingly critical as global energy demands rise and 
environmental regulations become more stringent 
[3]. The manufacturing sector currently accounts for 
approximately 30% of global energy consumption 
and 25% of greenhouse gas emissions, underlining 
the urgency for innovative optimization strategies 
[4]. Traditional manufacturing operations prioritize 
production metrics like throughput and quality, often 
treating energy consumption as a secondary concern 
rather than an integral optimization parameter [5]. 
The emergence of smart manufacturing paradigms, 
characterized by interconnected cyber-physical sys-
tems and data-driven decision-making, presents new 
opportunities to address these competing objectives 
simultaneously, as demonstrated by Andronie et al. 
[6] and Chinchorkar [7].

Production scheduling represents a critical manu-
facturing decision-making process that directly im-
pacts both productivity and energy consumption 
patterns [8]. Conventional scheduling approaches 
typically optimize for either production efficiency 
or energy conservation independently, resulting in a 
disjointed and suboptimal approach to optimization 
[9]. Research by Karimi et al. [10] demonstrated that 
production-focused scheduling can increase energy 
consumption by up to 40% compared to energy-
aware alternatives, while purely energy-minimizing 
schedules may reduce production capacity by 15-
25%. This inherent trade-off necessitates sophisticat-
ed multi-objective optimization frameworks that can 
balance these competing priorities [11]. Recent ad-
vances in computational intelligence have introduced 
various techniques for multi-objective manufacturing 
optimization, including genetic algorithms and par-
ticle swarm optimization as implemented by Dou et 
al. [12] and Zhang et al. [13], as well as fuzzy logic 
systems developed by Zhang et al. [14].

Digital twin (DT) technology has emerged as a 
transformative approach in manufacturing environ-
ments, providing high-fidelity virtual representations 
of physical assets, processes, and systems, as dem-
onstrated by Siahkouhi et al. [15] and Ayubirad et 
al. [16]. These virtual counterparts synchronize with 
their physical counterparts in near real-time, enabling 
enhanced monitoring, simulation, and optimization 

capabilities [17]. The implementation of DTs in 
manufacturing contexts has demonstrated significant 
benefits, including reduced downtime, improved 
quality control, and enhanced process visibility [18]. 
However, the full potential of DTs for concurrent 
optimization of production and energy metrics re-
mains largely unexplored [19].

Reinforcement Learning (RL) algorithms have 
demonstrated remarkable capabilities in complex 
decision-making scenarios across various domains 
[20]. In manufacturing contexts, RL approaches 
have been applied to individual machine optimiza-
tion [21], maintenance scheduling [22], and produc-
tion line balancing [23]. The adaptability of RL to 
dynamic operating conditions makes it particularly 
suitable for manufacturing environments character-
ized by variability and uncertainty [24]. However, the 
application of RL to multi-objective manufacturing 
optimization, particularly when integrated with DT 
technology, represents an emerging research frontier 
with substantial unexplored potential [25].

Despite significant advances in both DT technol-
ogy and RL algorithms, current research presents a 
notable gap in their integrated application for concur-
rent optimization of production efficiency and energy 
consumption [26]. Existing approaches typically em-
ploy either DT-based simulation without advanced 
learning capabilities or RL algorithms without the 
high-fidelity environmental modeling that DTs pro-
vide [27]. This integration gap limits the effectiveness 
of current optimization strategies in capturing com-
plex system interactions and identifying non-obvious 
optimization opportunities, as highlighted by Mamyr-
bayev et al. [28] and Hauge et al. [29].

The present study addresses this research gap by 
developing and validating a comprehensive multi-
objective optimization framework that integrates RL 
algorithms with DT technology specifically calibrated 
for manufacturing environments. The framework 
employs Proximal Policy Optimization (PPO) algo-
rithms operating within detailed digital representa-
tions of manufacturing facilities, incorporating real-
time data from IoT sensors to optimize weighted 
objectives balancing production and energy metrics 
[30]. The framework's performance is validated 
through its application across three manufacturing fa-
cilities in Uzbekistan, with the objective of achieving 
significant reductions in energy consumption while 
maintaining production output within 2% of maxi-
mum capacity.

This research contributes to the field by estab-
lishing a methodological foundation for integrated 
DT-RL approaches to manufacturing optimization, 
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providing practitioners with implementable tools for 
achieving sustainability goals without compromising 
production requirements. The framework advances 
beyond existing methodologies by enabling dynamic 
adaptation to changing operating conditions while 
simultaneously optimizing across multiple objective 
functions, representing a significant advancement in 
smart manufacturing implementation.

2. Methodology

2.1 Research Design Overview

This study employed a mixed-methods research 
design combining experimental implementation 
with comparative analysis to evaluate the effective-
ness of the proposed multi-objective optimization 
framework. The research process followed four 
sequential phases: (1) data collection and prepro-
cessing from manufacturing facilities, (2) digital 
twin development and validation, (3) RL algorithm 
training and integration, and (4) framework valida-
tion through controlled A/B testing. The study was 
conducted across three discrete manufacturing facili-
ties in Uzbekistan's Tashkent Industrial Zone over a 
24-month period (January 2023 to December 2024), 
encompassing diverse production environments in-
cluding automotive component manufacturing, con-
sumer electronics assembly, and precision machin-
ing operations.

2.2 Manufacturing Facilities and Data 
Collection Infrastructure

The research utilized three discrete manufactur-
ing facilities with varying production characteristics, 
collectively operating 42 computer numerical control 
(CNC) machines, 18 robotic assembly cells, and 27 
manual workstations. An integrated sensor network 
comprising 387 Internet of Things (IoT) devices 
was implemented across these facilities. The sensor 
ecosystem included 156 Power Monitoring Units 
(PMUs) tracking machine-level energy consump-
tion at 30-second intervals, 97 environmental sensors 
measuring ambient conditions, 86 production moni-
toring sensors tracking cycle times and quality param-
eters, and 48 material flow sensors documenting in-
ventory movements and work-in-progress status.

Data aggregation employed a three-tier architec-
ture consisting of edge computing nodes for pre-
liminary data processing, a facility-level middleware 
layer for temporal alignment and anomaly detection, 

and a centralized data repository implemented on a 
PostgreSQL database system. Real-time data streams 
were processed using Apache Kafka to handle high-
throughput sensor inputs, while historical data span-
ning 18 months of operations (approximately 3.2 
terabytes) was utilized for algorithm training and 
baseline establishment. Data preprocessing included 
outlier detection using Isolation Forest algorithms, 
missing value imputation using K-Nearest Neighbors 
(KNN) approaches, and feature normalization to en-
sure consistency across measurement scales.

2.3 Digital Twin Development

The Digital Twins (DTs) were constructed using 
Siemens Tecnomatix Plant Simulation 17.1, provid-
ing high-fidelity virtual representations of the physi-
cal manufacturing environments. This platform was 
selected for its robust capabilities in discrete-event 
simulation, detailed modeling of material flow, and 
its extensive libraries for representing complex man-
ufacturing equipment and logic, which were essential 
for creating high-fidelity models of the target facili-
ties. Each facility's DT incorporated detailed spatial 
layouts, equipment specifications, material handling 
systems, and operational logic derived from physical 
observations and technical documentation. The DT 
development followed a multi-layer modeling ap-
proach, represented by:

 
DT = PL ,FL ,CL ,DL                                                  (1)

Where PL represents the physical layer (geometri-
cal representation and spatial relationships), FL de-
notes the functional layer (equipment capabilities and 
constraints), CL captures the connectivity layer (mate-
rial and information flows), and DL incorporates the 
data layer (sensor inputs and historical patterns).

Synchronization between physical assets and 
their digital counterparts employed a bidirectional 
communication protocol with a maximum latency 
threshold of 250 milliseconds, achieved through 
OPC Unified Architecture (OPC UA) interfaces 
and custom-developed application programming 
interfaces (APIs). Initial validation of the DTs was 
conducted through a statistical comparison of sim-
ulated versus actual production data across 45 key 
performance indicators (KPIs), yielding a prelimi-
nary mean accuracy of 93.7% (standard deviation of 
4.2%). The final, detailed DT fidelity assessment, 
which is based on the five core operational metric 
categories presented in Table 1, is further detailed 
in the Results section.
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2.4 Reinforcement Learning Algorithm

The optimization framework employed a cus-
tom-developed deep reinforcement learning algo-
rithm utilizing PPO methodology. The PPO algo-
rithm was selected for its sample efficiency, stability 
during training, and effectiveness in continuous ac-
tion spaces characteristic of manufacturing sched-
uling problems. The algorithm was formulated as 
a Markov Decision Process (MDP) defined by the 
tuple [31]:

 
MDP = (S,A,P,R,γ)                                                   (2)

Where S represents the state space encompass-
ing machine status, production queue characteris-
tics, and energy consumption patterns; A denotes 
the action space comprising scheduling decisions; 
P:S×A×S→[0,1] represents the transition probabil-
ity function; R:S×A→⁮ is the reward function; and   
γ∈[0,1] is the discount factor balancing immediate 
versus future rewards, set at 0.93 after hyperparam-
eter tuning.

The PPO algorithm optimized policy parameters 
$\theta$ to maximize the expected reward by updat-
ing the policy through:

 

(3)

Where  represents the advantage func-
tion, KL denotes the Kullback-Leibler divergence 
measuring policy change magnitude, and β controls 
the strength of the KL divergence penalty, dynami-
cally adjusted during training to maintain appropriate 
policy update magnitudes.

The neural network architecture consisted of 
four fully connected layers with [512, 256, 128, 
64] neurons respectively, employing leaky ReLU 
activation functions (α=0.2) for hidden layers and 
a softmax activation for action probability distribu-
tion. The state representation included 78 features 
encoding machine status, production requirements, 
energy consumption patterns, and time-of-day 
electricity pricing information. The algorithm was 
implemented using TensorFlow 2.8 and trained on 
dual NVIDIA A100 GPUs with a batch size of 512 
and a learning rate of 3×10-4 using the Adam opti-
mizer.

2.5 Multi-objective Optimization Framework

The core of the framework employed a weighted 
multi-objective function balancing production effi-
ciency and energy consumption metrics. The objec-
tive function was formulated as:

 

(4)

Where Pi(x) represents the  i-th production met-
ric (throughput, makespan, tardiness), Ej(x) denotes 
the  j-th energy consumption metric (total consump-
tion, peak demand, energy cost), and Qk(x) captures 
the k-th quality metric (defect rate, rework percent-
age). The corresponding weight vectors ωP, ωE, and 
ωQ determine the relative importance of individual 
metrics within each category, while α, β, and γ are 
category balancing coefficients determined through 
Analytical Hierarchy Process (AHP) involving do-
main experts from the participating facilities.

The AHP procedure was systematically conduct-
ed to ensure robust and consistent derivation of the 
category balancing coefficients (α, β, γ). The process 
involved three senior personnel from the participat-
ing facilities, including a production manager, an en-
ergy systems engineer, and a quality assurance lead. A 
three-level hierarchy was established with the overall 
goal of 'balanced operational excellence' at the top, 
the three main criteria (Production, Energy, Quality) 
at the second level, and their respective sub-metrics 
at the third. Pairwise comparison matrices were con-
structed for the main criteria, where experts judged 
the relative importance of each criterion against the 
others using Saaty's 1-to-9 fundamental scale. The re-
sulting judgments were synthesized to calculate the 
priority vectors, which correspond to the coefficients 
α, β, and γ. To ensure the reliability of the inputs, 
the Consistency Ratio (CR) was calculated for each 
matrix, with all final judgments achieving a CR of less 
than 0.10, indicating a high degree of consistency.

The framework incorporated dynamic constraint 
handling through the augmented Lagrangian meth-
od, adapting to changing production requirements 
and energy availability. Constraints included mini-
mum production volumes, maximum permissible 
energy consumption during peak periods, and quality 
thresholds. The constraint satisfaction was enforced 
through:

 

(5)
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Where gi(x)≤0 represents the i-th constraint, λi 

denotes the Lagrange multiplier, and μ is the pen-
alty parameter. This formulation enabled the frame-
work to navigate complex constraint landscapes while 
maintaining solution feasibility.

2.6 Validation Methodology

The framework's effectiveness was evaluated 
through controlled A/B testing methodology [32] 
comparing algorithm-generated scheduling recom-
mendations against traditional scheduling approaches 
across 93 production runs. The validation employed 
a randomized block design controlling for produc-
tion volume, product mix complexity, and seasonal 
energy pricing variations. These production runs 
were distributed evenly across the three facilities, 
with 31 runs conducted at each site to ensure a bal-
anced evaluation across the different manufacturing 
environments. The validation employed a random-
ized block design controlling for production volume, 
product mix complexity, and seasonal energy pric-
ing variations. Performance metrics were collected 
through the established sensor network and validated 
against production management systems.

Statistical significance was assessed using paired 
t-tests with Bonferroni correction for multiple com-
parisons. Effect sizes were calculated using Cohen's 
d metric to quantify practical significance beyond 
statistical significance. The validation protocol in-
cluded three distinct testing phases: (1) controlled 
simulations within the digital twin environment, (2) 
limited-scope implementations on non-critical pro-
duction lines, and (3) full-scale deployment across all 
three manufacturing facilities. This phased approach 
enabled progressive validation while minimizing op-
erational disruption and implementation risks.

3. Results and Discussions

3.1 Digital Twin Validation Results

The effectiveness of the DT implementation was 
assessed through comprehensive validation testing 
comparing virtual model predictions with actual op-
erational outcomes. For the purposes of this valida-
tion, prediction accuracy was quantified using the for-
mula: Accuracy (%) = 100% – MAPE, where MAPE 
represents the Mean Absolute Percentage Error. Ta-
ble 1 presents the resulting validation metrics across 
the three manufacturing facilities, demonstrating the 
accuracy of the digital representations in capturing 
real-world operational dynamics.

The validation results demonstrate high fidelity 
across all measured parameters, with an average ac-
curacy of 92.4% across all facilities. The precision 
machining facility exhibited the highest overall fidel-
ity (94.0%), attributed to its more deterministic op-
erational characteristics and lower process variability. 
The consumer electronics facility showed compara-
tively lower accuracy metrics (90.5%), reflecting its 
more complex assembly operations and greater hu-
man operator involvement. These results confirm 
that the DT implementations provided sufficiently 
accurate virtual environments for subsequent optimi-
zation algorithm training and testing.

3.2 Reinforcement Learning Algorithm 
Training Performance

The performance of the PPO algorithm dur-
ing the training phase was evaluated based on con-
vergence characteristics, learning stability, and final 
policy quality. Figure 1 illustrates the progression of 
key performance metrics throughout the algorithm 
training process.

Validation Metric Automotive 
Components

Consumer 
Electronics

Precision 
Machining Average

Production Throughput Accuracy (%) 94.3 ± 2.1 91.8 ± 3.4 95.2 ± 1.8 93.8

Energy Consumption Prediction Accuracy (%) 92.7 ± 3.2 90.6 ± 3.9 93.5 ± 2.5 92.3

Machine State Prediction Accuracy (%) 96.2 ± 1.7 93.4 ± 2.6 97.1 ± 1.5 95.6

Resource Utilization Accuracy (%) 91.5 ± 3.5 89.7 ± 4.1 92.9 ± 2.8 91.4

Material Flow Timing Accuracy (%) 88.9 ± 4.3 87.2 ± 5.0 91.3 ± 3.2 89.1

Overall DT Fidelity Score 92.7 90.5 94.0 92.4

Table 1. Digital twin validation metrics across manufacturing facilities
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As shown in Figure 1, there was substantial im-
provement across all metrics throughout the training 
process. The average episode reward (Figure 1a) dem-
onstrates a significant transition from negative values 
during initial exploration (-1832.4) to strongly posi-
tive values (1475.2) after policy convergence. Policy 
and value function losses (Figure 1b) decreased by 
76% and 81% respectively from initial to final training 
phases, indicating effective learning and parameter 
optimization. The constraint satisfaction rate (Figure 
1c) improved from 62.3% to 96.4%, demonstrating 
the algorithm's increasing ability to generate feasible 
solutions within the complex constraint landscape of 
manufacturing environments.

3.3 Energy Consumption Optimization

Implementation of the multi-objective optimiza-
tion framework resulted in substantial reductions in 
energy consumption across all three manufacturing 

facilities while maintaining production targets. Figure 
2 presents the detailed energy consumption metrics 
before and after framework implementation.

As illustrated in Figure 2, the framework imple-
mentation resulted in an average energy consump-
tion reduction of 22.7% across all facilities (Figure 
2a). Peak power demand demonstrated even more 
substantial reductions (Figure 2b), with a combined 
decrease of 27.9%, indicating effective load balancing 
and peak shaving capabilities. Energy costs declined 
by 19.1% on average (Figure 2c). Figure 2d summa-
rizes these improvements across all metrics. The pre-
cision machining facility exhibited the highest peak 
power demand reduction (31.6%), while the con-
sumer electronics facility achieved the greatest total 
energy consumption improvement (24.8%). These 
improvements were accomplished without compro-
mising production targets, as detailed in subsequent 
sections.

Figure 1. Reinforcement Learning Algorithm Training Performance: (a) Average Episode Reward during training epochs, 
(b) Loss Functions throughout training phases, and (c) Constraint Satisfaction Rate progression
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3.4 Production Performance Metrics

While optimizing for energy efficiency, the frame-
work maintained high production performance 
across all facilities. Table 2 presents key production 

metrics before and after implementation.
The results demonstrate that the framework-

maintained production performance within accept-
able parameters while optimizing for energy effi-
ciency. Makespan increased by an average of 2.4%, 

Figure 2. Energy Consumption Metrics Before and After Framework Implementation: (a) Total Energy Consumption, 
(b) Peak Power Demand, (c) Energy Cost, and (d) Average Improvement Across Facilities

Production Metric Facility Baseline 
(Pre-Implementation) Post-Implementation Change (%)

Makespan (hours/batch)

Automotive Components 8.2 ± 0.7 8.3 ± 0.5 +1.2

Consumer Electronics 7.5 ± 0.6 7.8 ± 0.5 +4.0

Precision Machining 9.3 ± 0.8 9.4 ± 0.6 +1.1

Average 8.3 ± 0.7 8.5 ± 0.5 +2.4

Machine Utilization (%)

Automotive Components 78.3 ± 4.2 77.5 ± 3.7 -1.0

Consumer Electronics 82.6 ± 5.1 80.7 ± 4.3 -2.3

Precision Machining 75.2 ± 4.7 74.8 ± 3.9 -0.5

Average 78.7 ± 4.7 77.7 ± 4.0 -1.3

On-Time Delivery (%)

Automotive Components 92.7 ± 3.2 91.5 ± 2.8 -1.3

Consumer Electronics 91.3 ± 3.8 89.6 ± 3.1 -1.9

Precision Machining 94.2 ± 2.7 93.7 ± 2.2 -0.5

Average 92.7 ± 3.2 91.6 ± 2.7 -1.2

Table 2. Production Performance Metrics Before and After Framework Implementation
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representing a modest trade-off for the substantial en-
ergy savings achieved. Machine utilization decreased 
marginally (1.3% average reduction), indicating more 
strategic scheduling of equipment operation. On-
time delivery performance decreased by only 1.2%, 
maintaining high service levels across all facilities. 
These results confirm that the framework success-
fully balanced energy optimization with production 
performance requirements.

3.5 Product Quality Improvements

An unexpected benefit of the optimization frame-
work was improved product quality across all manu-
facturing facilities. Table 3 presents the quality met-
rics before and after implementation.

The data reveals significant improvements across 
all quality metrics, with an average defect rate reduc-
tion of 6.9%. The automotive components facility 
demonstrated the most substantial quality improve-
ments, with defect rate reduction of 10.5% and re-
work rate reduction of 11.9%. Customer return rates 
showed the most dramatic improvement, with an av-
erage reduction of 11.8% across all facilities. These 
quality enhancements are attributed to more optimal 
machine utilization patterns, reduced production 
pressure during peak energy periods, and more con-
sistent processing conditions facilitated by the optimi-
zation framework.

Quality Metric Facility Baseline 
(Pre-Implementation) Post-Implementation Improvement (%)

Defect Rate (%)

Automotive Components 3.8 ± 0.5 3.4 ± 0.3 10.5

Consumer Electronics 2.7 ± 0.4 2.6 ± 0.3 3.7

Precision Machining 2.1 ± 0.3 2.0 ± 0.2 4.8

Average 2.9 ± 0.4 2.7 ± 0.3 6.9

First-Pass Yield (%)

Automotive Components 91.4 ± 2.3 93.2 ± 1.7 2.0

Consumer Electronics 93.8 ± 1.9 94.5 ± 1.5 0.7

Precision Machining 94.6 ± 1.6 95.2 ± 1.2 0.6

Average 93.3 ± 1.9 94.3 ± 1.5 1.1

Rework Rate (%)

Automotive Components 4.2 ± 0.6 3.7 ± 0.4 11.9

Consumer Electronics 3.6 ± 0.5 3.3 ± 0.4 8.3

Precision Machining 2.8 ± 0.4 2.6 ± 0.3 7.1

Average 3.5 ± 0.5 3.2 ± 0.4 8.6

Customer Return Rate (%)

Automotive Components 1.8 ± 0.3 1.5 ± 0.2 16.7

Consumer Electronics 2.2 ± 0.4 1.9 ± 0.3 13.6

Precision Machining 1.2 ± 0.2 1.1 ± 0.2 8.3

Average 1.7 ± 0.3 1.5 ± 0.2 11.8

Table 3. Product Quality Metrics Before and After Framework Implementation

Performance Metric Mixed-Integer 
Programming Genetic Algorithm Simulated Annealing Proposed 

RL Framework

Convergence Time (min) 87.3 ± 12.6 52.4 ± 8.7 43.8 ± 7.2 21.2 ± 4.3

Solution Quality (normalized) 0.87 ± 0.08 0.83 ± 0.07 0.79 ± 0.09 0.92 ± 0.05

Constraint Satisfaction (%) 98.7 ± 1.2 92.5 ± 3.4 88.3 ± 5.2 96.4 ± 2.1

Computational Resource Usage 
(CPU-hours) 42.7 ± 6.5 27.3 ± 4.2 24.1 ± 3.8 8.3 ± 1.7

Adaptability to Changing 
Conditions (1-10 scale) 4.2 ± 0.8 6.7 ± 1.1 7.4 ± 1.2 9.1 ± 0.7

Multi-objective Optimization 
Efficiency (%) 72.3 ± 6.4 68.7 ± 7.3 65.2 ± 8.1 88.6 ± 4.2

Table 4. Computational Performance Comparison Between RL Framework and Conventional Methods
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3.6 Algorithm Performance and 
Computational Efficiency

The computational performance of the rein-
forcement learning algorithm was evaluated against 
traditional optimization approaches. Table 4 pres-
ents comparative performance metrics between the 
proposed RL-based framework and conventional 
methods.

The proposed RL framework demonstrated su-
perior performance across all measured metrics. 
Convergence time was reduced by an average of 
75.7% compared to mixed-integer programming 
(MIP), 59.5% compared to genetic algorithms (GA), 
and 51.6% compared to simulated annealing (SA). 
The solution quality, normalized against theoretical 
optimal solutions derived from exhaustive search on 
simplified test cases, was highest for the RL frame-
work (0.92), indicating its effectiveness in identifying 
near-optimal solutions. While constraint satisfaction 
was marginally lower than MIP approaches, the RL 
framework demonstrated substantially better adapt-
ability to changing conditions and multi-objective 
optimization efficiency, making it more suitable for 
dynamic manufacturing environments.

3.7 Energy Consumption Prediction Accuracy

The framework's ability to predict energy con-
sumption patterns was evaluated to assess its utility 
for proactive energy management. Table 5 presents 
prediction accuracy metrics across different opera-
tional scenarios.

The results indicate high prediction accuracy 
across all operational scenarios, with an average ac-
curacy of 89.8%. Standard production scenarios 
exhibited the highest prediction accuracy (91.7%), 
while production ramp-up scenarios posed the great-
est challenge (87.6% accuracy). The framework-
maintained R² values above 0.87 across all scenarios, 

indicating strong correlation between predicted and 
actual energy consumption. These high accuracy lev-
els enable proactive energy management strategies, 
including load shifting during peak pricing periods 
and optimized maintenance scheduling based on en-
ergy consumption patterns.

3.8 Comparative Analysis with Existing 
Frameworks

The performance of the proposed framework 
was benchmarked against existing optimization ap-
proaches documented in the literature. Figure 3 
presents a comparative analysis of key performance 
metrics across different frameworks.

The comparative analysis in Figure 3 demon-
strates that the proposed framework outperforms ex-
isting approaches across all key metrics. The parallel 
coordinates plot (Figure 3a) provides a comprehen-
sive visualization of all metrics simultaneously, clearly 
showing the proposed framework's superior perfor-
mance profile. As illustrated in Figure 3b, the pro-
posed framework achieves both the highest energy 
reduction (22.7%) and the most significant positive 
quality impact (6.9%), placing it firmly in the ideal 
region of high energy savings with quality improve-
ments, as demonstrated by Karimi et al. [10], Bel-
gacem and Beghdad-Bey [11], Zhang et al. [13], and 
Mayer et al. [30]. Figure 3c shows that the framework 
maintains the highest production level (98.9% mainte-
nance) while also demonstrating superior adaptability 
(9.1 on a 10-point scale). The convergence time, as 
shown in Figure 3a, was reduced by 76% compared 
to the baseline framework, consistent with previous 
findings. The proposed framework's unique com-
bination of high energy savings, production mainte-
nance, and quality improvement distinguishes it from 
existing approaches that typically trade off these com-
peting objectives.

Prediction Scenario Mean Absolute Error 
(kWh)

Mean Absolute 
Percentage Error (%) R2 Value Prediction Accuracy 

(%)

Standard Production 32.7 ± 5.8 8.3 ± 1.2 0.927 91.7 ± 1.2

High-Volume Production 47.5 ± 8.3 10.6 ± 1.8 0.894 89.4 ± 1.8

Mixed-Product Production 43.2 ± 7.6 9.8 ± 1.6 0.912 90.2 ± 1.6

Production Ramp-Up 52.8 ± 9.2 12.4 ± 2.1 0.873 87.6 ± 2.1

Production Ramp-Down 38.3 ± 6.7 9.1 ± 1.4 0.916 90.9 ± 1.4

Equipment Maintenance 29.5 ± 5.2 11.3 ± 1.9 0.892 88.7 ± 1.9

Average 40.7 ± 7.1 10.2 ± 1.7 0.902 89.8 ± 1.7

Table 5. Energy Consumption Prediction Accuracy Metrics
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3.9 Validation Through A/B Testing

The final validation of the framework employed 
controlled A/B testing comparing algorithm-generat-
ed scheduling recommendations against traditional 
scheduling across 93 production runs. Table 6 pres-
ents the comprehensive validation results.

The A/B testing results confirm the framework's 
effectiveness across all performance categories. The 
energy metrics show statistically significant improve-
ments (p<0.001) consistent with previous analyses. 
Production volume reduction was not statistically 
significant (p=0.218), while makespan increase was 
marginally significant (p=0.037), confirming that pro-

Figure 3. Comparative Analysis with Existing Optimization Frameworks: (a) Parallel Coordinates Comparison across all metrics, 
(b) Energy Reduction vs. Quality Impact, and (c) Production Maintenance and Adaptability Rating

Performance 
Category Metric Traditional 

Scheduling
Framework-Based 

Scheduling Improvement (%) p-value

Energy 
Performance

Total Energy Consumption 
(kWh/day) 11,142.3 ± 958.4 8,612.5 ± 562.3 22.7 <0.001

Peak Power Demand (kW) 1,763.7 ± 142.3 1,274.5 ± 89.7 27.7 <0.001

Energy Cost (USD/day) 1,657.2 ± 147.3 1,342.8 ± 96.5 19.0 <0.001

Production 
Performance

Production Volume (units/day) 1,159.7 ± 78.3 1,145.8 ± 68.2 -1.2 0.218

Makespan (hours/batch) 8.2 ± 0.7 8.4 ± 0.6 +2.4 0.037

Machine Utilization (%) 79.2 ± 4.8 78.1 ± 4.2 -1.4 0.107

Quality 
Performance

Defect Rate (%) 2.9 ± 0.4 2.7 ± 0.3 6.9 0.002

Rework Rate (%) 3.5 ± 0.5 3.2 ± 0.4 8.6 <0.001

Customer Return Rate (%) 1.7 ± 0.3 1.5 ± 0.2 11.8 <0.001

Operational 
Metrics

Setup Time Reduction (%) - 12.7 ± 2.1 12.7 <0.001

Resource Efficiency 
(units/resource-hour) 2.4 ± 0.3 2.7 ± 0.2 12.5 <0.001

Schedule Stability 
(coefficient of variation) 0.28 ± 0.05 0.19 ± 0.03 32.1 <0.001

Table 6. A/B Testing Validation Results Across 93 Production Runs
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duction performance was largely maintained. Quality 
improvements were statistically significant across all 
metrics, with p-values below 0.002. Additional oper-
ational metrics revealed significant benefits in setup 
time reduction (12.7%), resource efficiency improve-
ment (12.5%), and schedule stability enhancement 
(32.1% reduction in coefficient of variation). These 
comprehensive validation results, derived from ac-
tual production runs, provide robust evidence of 
the framework's practical effectiveness in real-world 
manufacturing environments.

4. Discussion 

The results of this study demonstrate that the inte-
gration of DT technology with RL creates a powerful 
framework for concurrent optimization of energy ef-
ficiency and production performance in manufactur-
ing environments. The framework achieved a 22.7% 
reduction in energy consumption while maintaining 
production output within 1.2% of baseline capacity, 
exceeding the initial expectations. This substantial 
energy reduction without significant production com-
promise represents a paradigm shift in manufactur-
ing optimization, where traditionally energy and pro-
duction objectives have been viewed as competing 
priorities requiring trade-offs. The 27.9% reduction 
in peak power demand is particularly significant as 
it directly addresses one of the most challenging as-
pects of industrial energy management - peak load 
reduction - which has substantial implications for in-
frastructure requirements and utility costs.

The comparative analysis reveals that the pro-
posed framework outperforms existing optimization 
approaches documented in the literature. While 
Zhang et al. [13] achieved a 21.4% energy reduction 
and Belgacem and Beghdad-Bey [11] maintained 
95.8% production capacity, neither approach ac-
complished both simultaneously to the degree dem-
onstrated in this study. The 76% faster convergence 
time of the RL algorithm compared to traditional 
MIP approaches aligns with findings by Mayer et 
al. [30], who noted computational efficiency gains 
with machine learning approaches, albeit at a more 
modest 7% improvement. The unique aspect of our 
framework is the substantial quality improvement 
(6.9%) observed, which contrasts with the quality deg-
radation (-3.7%) reported by Karimi et al. [10] when 
implementing energy-focused optimization. This 
quality enhancement appears to be a direct result of 
the more balanced machine utilization patterns facili-
tated by the multi-objective optimization approach.

Despite promising results, several limitations 
should be acknowledged. First, the framework vali-
dation was conducted in three specific manufactur-
ing environments, potentially limiting generalizability 
to other industrial contexts with different production 
characteristics. Second, the 18-month historical da-
taset used for RL training, while substantial, may not 
capture all seasonal variations or rare operational 
scenarios, potentially affecting the algorithm's perfor-
mance in edge cases. Third, the framework assumes 
reliable sensor infrastructure and data quality, which 
may not be available in all manufacturing environ-
ments, particularly in developing regions or legacy 
facilities. Finally, the implementation required sig-
nificant computational resources during the initial 
training phase (dual NVIDIA A100 GPUs), which 
might present barriers for smaller manufacturing op-
erations with limited technological infrastructure.

The demonstrated ability to achieve substantial 
energy savings while maintaining production targets 
has significant practical implications for manufactur-
ing sustainability. The 19.1% reduction in energy 
costs represents not only environmental benefits but 
also tangible financial returns that could accelerate 
adoption of such optimization approaches. The im-
proved product quality represents an additional value 
proposition beyond the energy-production balance, 
providing manufacturers with a compelling business 
case for implementation. The framework's ability to 
predict energy consumption with 89.8% accuracy en-
ables proactive energy management strategies includ-
ing demand response participation and optimized 
maintenance scheduling.

Several promising research directions emerge 
from this study. First, exploring transfer learning ap-
proaches could reduce the computational require-
ments for framework implementation in new man-
ufacturing environments by leveraging knowledge 
from previously optimized facilities. Second, inte-
grating renewable energy forecasting could enhance 
the framework's ability to align production schedules 
with periods of renewable energy availability. Third, 
extending the framework to incorporate supply chain 
considerations could optimize energy efficiency 
across entire manufacturing networks rather than 
individual facilities. Finally, investigating the human 
factors associated with algorithm-generated schedul-
ing recommendations could improve implementa-
tion effectiveness by addressing operator trust and 
acceptance concerns.
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5. Conclusions

This research demonstrates that the integration 
of digital twin technology with reinforcement learn-
ing algorithms creates a powerful framework for 
concurrent optimization of energy efficiency and 
production performance in manufacturing environ-
ments. The implementation achieved a 22.7% re-
duction in energy consumption while maintaining 
production output within 1.2% of baseline capacity, 
representing a significant advancement over tradi-
tional approaches that typically require substantial 
trade-offs between these competing objectives. The 
framework's ability to reduce peak power demand 
by 27.9% addresses critical infrastructure challenges, 
while the 19.1% reduction in energy costs provides a 
compelling business case for adoption. Notably, the 
unexpected 6.9% improvement in product quality 
indicates that optimized machine utilization patterns 
can enhance manufacturing outcomes beyond sus-
tainability metrics. The computational efficiency of 
the reinforcement learning approach, converging to 
near-optimal solutions 76% faster than conventional 
methods, enables practical implementation in dy-
namic manufacturing environments. These findings 
establish that advanced machine learning techniques 
embedded within digital twin environments can iden-
tify non-obvious optimization opportunities that tra-
ditional scheduling methods overlook. The validated 
framework provides manufacturing organizations 
with practical tools for achieving sustainability goals 
without compromising production requirements, 
creating a pathway toward more environmentally re-
sponsible industrial operations.
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