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A B S T R A C T 

In the paper, based on the results of the experimental research of high-strength low-alloy steel 
(HSLA), Nionicral 70 (NN-70), under conditions of low-cycle fatigue (LCF), a numerical analysis of 
stress and determination of the life of steel samples was performed. Experimental testing of the 
behavior of the samples were performed with controlled and fully reversible strain (/2 = const,  
R = min/max = -1), according to the standard ISO 12106:2003 (E). For computational analyses, the 
following were used: the method of least squares and the method of finite elements (FEM). On the 
basis of the analysis of the results of the stress-deformation state and the determination of the life 
span through the isolines of the life span and comparison with the results of experimental tests, a 
graphic representation is given. The analysis justified the effort to numerically solve the estimation 
of the lifespan of steel under low cycle fatigue (LCF). 
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1. INTRODUCTION  

Low-cycle fatigue of material means low-frequency 
material fatigue in which the appearance of microcracks 
and fractures occurs during repeated plastic strain with the 
number of cycles to failure N = 5x104 changes. Low-cycle 
fatigue is often referred to as statistical endurance under 
repeated static loads. The characteristics of the fatigue 
process during low-cycle fatigue differ from the 
characteristics of the fatigue process during high-cycle 
fatigue for the same load levels, so the assessment of the 
suitability of the material for long-term work must include 
two types of tests: high-cycle fatigue with high frequency 
(high frequency value) and low-cycle fatigue at lower 
frequency values.  
Experiences have shown that the time of crack initiation is 

relatively short, so the life of the structure is usually 
determined according to the time of crack development, or 
more precisely, according to the time of development to the 
critical length of the crack. 

2. TESTED MATERIAL 

HSLA steel, NN-70 [1] is the Yugoslav version of the 
American steel HY-100. HSLA steels are generally being 
used for producing of ship and pressure equipment. The 
most significant component that influences steel selection 
is the suitable strength-to-weight proportion of HSLA 
steels compared with regular low-carbon steels. Ship 
structures are most commonly being produced by welding. 
For this reason high strength low-alloy (HSLA) steels, 
besides high strength as the main properties, should also 
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have exceptional plasticity, adequate toughness and high 
resistance to brittle damage, as well as adequate 
workability and good welding performance [2 - 5]. Due to 
exposure to complex loading with constant cycles during 

exploitation, a basic understanding of material behavior 
and damage mechanisms under fatigue conditions is 
important. Tables 1 and 2 show the chemical composition 
and mechanical properties of HSLA steel NN-70. 

Table 1. Chemical composition (%wt) of NN-70 [6 – 29] 
C Si Mn P S Cr Ni Mo V Al As Sn 

0.106 0.209 0.220 0.005 0.0172 1.2575 2.361 0.305 0.052 0.007 0.017 0.014 
Cu Ti Nb Ca B Pb W Sb Ta Co N Ceq 

0.246 0.002 0.007 0.0003 0 0.0009 0.0109 0.007 0.0009 0.0189 0.0096 0.542 
Ceq = C + Mn/6 + Si/24 + Ni/40 + Cr/5 + Mo/4 + V/14. 

 

Table 2. Mechanical properties of NN-70 at room temperature, 20 °C, [6 – 29] 
Microstructure Tempered martensite + tempered bainite 
Ultimate tensile stress, Rm, MPa 854.8 
Yield stress, Rp0.2, MPa 813.4 

Modulus of elasticity, E, GPa 
static 211.5 
dynamic, LCF 221.4 

Percent elongation, A5, % 18.4 
Impact toughness, J/cm2 96.83 
Crack initiation energy, J/cm2 39.60 
Crack propagation energy, J/cm2 57.23 

Hardness 
plate 245-269 HV30 
LCF specimen 252-262 HV10 

3. MATERIAL TESTING 

Tests of steel, NN-70, by low-cycle fatigue with half-
amplitude of controlled deformation, /2=0.35 – 0.80, 
were performed on 10 round smooth test samples (RSTS), 
Fig. 1a, made of sticks, 11x11x95 mm from steel plate NN-
70, processed according to the drawing shown in Fig. 1b.  

Low cycle fatigue test, in accordance with ISO 12106:2017 
(E) [30], was performed on a universal servo-hydraulic 
MTS machine (rating 500 kN), in the Military Technical 
Institute in Žarkovo [10, 18]. The test results of 4 samples 
with controlled strain regimes shown in Table 3 were 
considered. 

 

 

a) symmetry in three planes b) geometry of the specimen 

Fig. 1 Specimen for LCF test of steel NN-70 [6, 29]
 
Table 3. Basic data on controlled strain regimes of LCF test NN-70 [18] 

RSTS 

1 2 3 4 5 6 7 
/2 
[%] 

/2 
[V] 

/2 
[mm/mm] 

l 
[mm] 


[%] 

T 
[s] 

f 
[Hz] 

test  1/100 3*25 1*2 test 1/6 
09 0.35 1.75 0.0035 0.0875 0.70 4.30 0.2326 
03 0.50 2.50 0.0050 0.1250 1.00 4.30 0.2326 
06 0.60 3.00 0.0060 0.1500 1.20 4.30 0.2326 
08 0.80 4.00 0.0080 0.2000 1.60 4.30 0.2326 

The test results were processed using the EXCEL program 
[15, 16, 18, 26]. The results of that processing are shown 
in Tables 4 and 5, as well as Figures 2, 3, and 4. 

 
 
 
 

2.0][[%]  V
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Table. 4 Characteristic processed test data of LCF steel NN-70 [25, 26] 

LCF NN-70, 
ISO 12106 [30] 

Stabilization regions Characteristic cycles of stabilization 

RSTS /2, % y=F, kN; x=N R2 Nbs Nes Nf Ns= Nf/2 

09 0.35 F=-0.0002N+24.30 0.95 812 6740 8329 4165 

03 0.50 F=-0.0022N+28.57 0.97 256 1271 1402 701 

06 0.60 F=-0.0057N+29.66 0.94 127 415 501 251 

08 0.80 F=-0.0162N+30.83 0.94 50 165 207 104 

Nbs –The beginning of stabilization; Nes – End of stabilization; Nf – Cycle of failure; Ns – Characteristic stabilization cycle 
 
Table 5. Calculated LCF elastic and plastic strain amplitude components of NN-70 steel at characteristic Ns [25, 26] 

RSTS 
y=mx-b; y=F, kN; x=p 

F=0; pb/m 
e=p 

Ns /2 p/2 e/2 
max, 
MPa 

min, 
MPa 

/2, 
MPa 

09 p3.04/61.38)/100 4165 0.0035 0.000495 0.003005 608.14 -689.48 648.81 

03 p18.74/109.15)/100 701 0.0050 0.001717 0.003283 702.84 -707.19 705.01 

06 p16.93/76.92)/100 251 0.0060 0.002201 0.003799 736.15 -698.00 717.07 

08 p27.97/65.04)/100 104 0.0080 0.004301 0.003699 761.87 -709.04 735.46 

 

LCF, - RSTS-09, /2=0.35 - LCF, - RSTS-03, /2=0.50 - 

LCF, - RSTS-06, /2=0.60 - LCF, - RSTS-08, /2=0.80 - 

Fig. 2 Graphical results of LCF test of NN-70 steel samples [25, 26] 

4. FEM SIMULATION 

The data from Table 2 and the data derived from processing 
the results of the low cycle fatigue (LCF) test using Excel 
were employed for the static and fatigue calculations of the 
Finite Element Method (FEM) model of the parent material 
(PM) specimen within the Cosmos module of the 
SolidWorks parametric program. These inputs are 
illustrated in Fig. 5. An illustration of the results of the 

calculation for a load of 27 kN (RSTS) is shown in Fig. 6 
and Table 6. The SolidWorks program provides various 
analyses for the FEM static calculation, including the 
evaluation of Mises stress distribution and the assessment 
of normal stresses, strains, and elongations. Concerning 
fatigue calculation, it offers information on the minimum 
and maximum number of iso-sections within the lifecycle 
and the percentage of damage for a specific section of the 
test specimen. The methodology delineating the cycle 
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count for reaching the critical point of fracture under a 
particular load (RSTS) is depicted in Fig. 6, while the 
results obtained from this methodology are detailed in 
Table 6. The iso-section, encompassing the complete 
ligament of the test specimen and lying between the 

minimum and maximum lifecycle cycles, signifies the 
cycle at which the fracture occurs. 
 
 
 
 

Fig. 3 Graphic view of processed stabilized hysteresis, Ns, LCF testing of HSLA steel NN-70 [25, 26] 
 

 

Fig. 4. Dependence S()-2Nf obtained in EXCEL by the method of least squares [25, 26] 
 

a) Input data for static calculation b) Input data for LCF calculation 

Fig. 5 Data for FEM calculation static and dynamic behaviour of HSLA steel NN-70 
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Table 6. Results of static calculation and simulation of LCF fatigue FEM in SolidWorks, RSTS of HSLA steel NN-70 

Testing specimen, cross section = 38.5 mm2 
FEM 

NfFEM 
SNfFEM, max, MPa 

 
LCF, Test 

NfExcel F, kN SNf, MPa 
Mizes Normal 

/2 NfTest 

N
N

-7
0 

  

N
f =

 e
(9

94
.1

5 
- 

S
N

f)
/4

1.
96

 

90 31.00 805.52 91 872.08 898.71 
  166 30.00 779.53 166 843.94 869.72 

0.80 208 254 29.32 761.87 254 824.81 850.01 
  309 29.00 753.55 309 815.81 840.73 

0.60 502 468 28.33 736.15 468 796.96 821.31 
  574 28.00 727.57 573 787.68 811.74 

0.50 1402 1035 27.05 702.84 1034 760,96 784.20 
  1067 27.00 701.58 1065 759.55 782.75 
  1982 26.00 675.60 1979 731.42 753.76 
  3682 25.00 649.61 3676 703.29 724.77 
  6839 24.00 623.63 6829 675.16 695.78 

0.35 8329 9892 23.40 608.14 9876 658.28 678.38 
  12704 23.00 597.64 12681 647.02 666.79 

SNf = -41,96ln(Nf) + 994,15 (from formula in Fig. 4) 

 

 

The cycle preceding the breaking cycle, 1069 Break cycle, 1070 

Reading isosurfaces 

5 cycles before breaking, 1060 Break cycle, 1065 
Isovolume reading 

Fig. 6 Determination of the failure cycle of RSTS HSLA steel NN-70 for a load of 27 kN (see table 6) 
 
5. DISCUSSION OF RESULTS 

By utilizing the least squares method in the EXCEL 
programs and employing the FEM in SolidWorks, we 
processed the outcomes of the LCF test and calculations. 

This process provided the essential data required to 
determine: (a) cyclic stress-strain curve (1), Table 7 and 
Fig. 7, and (b) fatigue life curve (2) and transition fatigue 
life (3), NfT, Table 8 and Fig. 8. 
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Table 7. Data for Cyclic stress-strain curve (1) of HSLA steel NN-70 

'n

1

'K2
 2

E






 





 (1) 

Method n' K', MPa E, MPa, (from N1/4 cycle) 

Standard [30] 0.047 946.2 221378 (221.4 GPa) 

 
Table 8. Data for fatigue life curve (2) and transition fatigue life of HSLA steel NN-70(3) 

c
f

'
f

b
f

'
f N N 

E2







 (2) 

cb

1

'
f

'
f

fT

E
N















       (3) 

Method 
elastic part plastic part  

E, MPa 'f, MPa b 'f c NfT 

Standard [30] 221378 1153.8 -0.060 0.1045 -0.594 274 

 

Fig. 7 Cyclic stress-strain curve of HSLA steel NN-70 (1) Fig. 8 Fatigue life curve (2) and transition fatigue life of HSLA steel NN-
70 (3) 

 

6. CONCLUSION 

The paper outlines fatigue test results (LCF) conducted on 
a smooth, round test specimen using HSLA steel NN-70 as 
the base metal. These test results served as input data for 
low-cycle fatigue simulations on these samples, employing 
Finite Element Method (FEM) calculations in SolidWorks. 
The primary objective was to obtain comparative results 
for assessing the lifespan using both testing and FEM 
calculations. The methodology employed in determining 
the cycle count for specimen fracture in this study 
facilitates FEM-based calculations to predict fracture 
cycles for other components made from the same base 
metal subjected to low cycle fatigue loads (LCF). 
One of the interesting and promising directions for future 
research involves applying the methodologies presented 
here to determine the size of fatigue cracks. This parameter 
stands as a crucial factor for characterizing fatigue 
existence, particularly under variable loading conditions. 
This approach aims to determine fatigue life, cycles until 
failure, and evaluate material resistance concerning crack 
initiation. Additionally, the progression of these cracks can 
also be tracked using Non-Destructive Testing (NDT) 
methods. 
The stabilization phase observed during the LCF tests 
conducted on all samples of the HSLA steel NN-70 base 
metal exhibits a strong alignment with the general equation 
of a straight line, y (F or σ) = m x (N) + b. By employing 
linearization, the coefficients m and b can be derived, 
providing insight into the weakening trend within the 
HSLA steel NN-70 base metal. 

These findings are valuable as they offer a practical 
contribution to assessing the behavior of high-strength, 
low-alloy NN-70 steel under LCF operating conditions. 
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