No.2

Journal of Production Engineering

Vol.24

JPE (2021) Vol.24 (2)

Original Scientific Paper

Bodzás, S., Békési, Zs., Kertész, J., Szorcsik, T.

TOOTH CONTACT ANALYSIS OF A DESIGNED PLANETARY GEAR DRIVE FOR THE VEHICLE INDUSTRY

Abstract: A planetary gear drive consists of a sun gear, planet pinions and an internal gear. We designed a complex gear system which is usable in the field of the vehicle industry into the automatized robots. The system was designed by GearTeq software which is connected with the SolidWorks designer software. After the assembly and the motion simulations tooth contact analysis (TCA) was made to analyse the normal stresses and the normal deformations on the connecting surface of the planet pinions and the internal gear by different load moments. **Key words:** Planetary gear drive, CAD, TCA, normal stress, normal deformation, analysis.

Analiza kontakta zuba projektovanog planetarnog zupčanika za industriju vozila. Pogon planetarnog zupčanika sastoji se od sunčanog zupčanika, planetarnih zupčanika i unutrašnjeg zupčanika. U automatizovane robote dizajnirali smo složen sistem zupčanika koji je upotrebljiv u oblasti industrije vozila. Sistem je dizajnirao GearTek softver koji je povezan sa SolidVorks dizajnerskim softverom. Nakon montaže i simulacije kretanja izvršena je analiza kontakta zuba (TCA) za analizu normalnih napona i normalnih deformacija na spojnoj površini planetarnih zupčanika i unutrašnjeg zupčanika po različitim momentima opterećenja.

Ključne reči: Planetarni zupčanik, CAD, TCA, normalno naprezanje, normalna deformacija, analiza.

1. INTRODUCTION

The planetary gear drives have two gear systems. The axis of the first system is fixed where the planet gears can rotate around it. The planet carrier can also rotate around it. The axes of the second system are assembled into the planet carrier and their teeth can connect with the first system. These planet pinions can rotate around their axes and the fixed axes of the first system [1, 3-5, 7, 9]. The overall mechanism show a similar motion as the Earth moves around the Sun (two rotation motions around two axes). The sun gear is the central gear which has a fix axes. The planet gears can do two rotation motions parallely. The internal gear is fixed. The planet gears are rotated by the sun gear and they are connected with the internal gear (Figure 1) [1, 3-5, 7, 9].

Fig. 1. The theorem of the planetary gear drive [1]

Considering the function of the gear system the sun gear can be pinion or gear. The planet pinions can also be pinions or gears. The yellow and green axes are not connected. The connection between them depends on the gear ratio (Figure 1) [1, 3-5, 7, 9].

2. THE GEOMETRIC DESIGN OF A GEAR SYSTEM

The geometric design process [3, 6-9] was created by the GearTeq software [2] with which different type of gear pairs can be designed (Figure 2). After knowing of the output geometric parameters the CAD models can be created by SolidWorks software (Figure 3).

Fig. 2. Geometric design by GearTeq software

Fig. 3. The geometric establishment of the designed planetary gear drive

The calculated geometric parameters can be seen on Table 1, 2 and 3. After the assembly and the motion simulations the TCA can be determined.

SYMBOL	VALLE	UNIT	TERM		Not Hunting		Hunting Determination
STINDOL	Coarse Pitch Involute 20deg	0	Standard		4560		Hunting Mesh Cycle
Ddn			Normal Diamotral Ditch		1.2		Hunting Common Factors
Pull Dd	0,33		Diametral District		6.7cpm		Hunting Tooth Frequency
Pu	0,33				253.3		Pinion RPM
	4		Normal Modular Pitch				
m	4		Modular Pitch		Gear Data		Ring Gear Follower01
øn	20	deg	Normal Pressure Angle	Np	76		Number of Teeth
Ø	20	deg	Pressure Angle	Dp	304	mm	Pitch Diameter
	0	deg	Helix Angle	Dpn	304	mm	Pitch Diameter, Normal
				do	314	mm	Major Diameter
	Gear Data		Ring_Gear_Follower01	dr	296	mm	Minor Diameter
Np	76		Number of Teeth	a.	250	mm	Addendum
Dp	304	mm	Pitch Diameter	h		mm	Dedendum
- r Dnn	304	mm	Pitch Diameter, Normal	b v			Addendum Modification Coefficient
do	314	mm	Major Diameter	^	0	mm	Addendum Modification
du	314		Major Diameter	db	205 667		Pase Diameter
ur	290			dbp	285,007	mm	Base Diameter Normal
a	4	mm	Addendum		285,007		True Involute Form Diameter
b	5	mm	Dedendum	11P	312,317	mm	True involute Form Diameter
х	0		Addendum Modification Coefficient	nt	42 555	mm	Whole Depth
	0	mm	Addendum Modification	p	12,566	mm	Circular Pitch
db	285,667	mm	Base Diameter	pn	12,566	mm	Circular Pitch, Normai
dbn	285,667	mm	Base Diameter, Normal		1,2	mm	Fillet Radius
TIF	312,317	mm	True Involute Form Diameter	В	0,4	mm	Backlash
ht	Q	mm	Whole Depth		6,6832	mm	Space Width
n	12 566	mm	Circular Pitch		6,8352	mm	Space Width Maximum
r nn	12,300	mm	Circular Pitch Normal	t	5,8832	mm	Tooth Thickness
ы	12,566		Cillot Padius	tn	5,8832	mm	Tooth Thickness, Normal
	1,2	mm		t	5,7312	mm	Tooth Thickness Minimum
В	0,4	mm	Backlash	F	50	mm	Face Width
	6,6832	mm	Space Width				Chordal Tooth Thickness
	6,8352	mm	Space Width Maximum		0,869		Chordal Tooth Height
t	5,8832	mm	Tooth Thickness		312,317		Chordal Tooth Reference Circle
tn	5,8832	mm	Tooth Thickness, Normal		2,6396		Chordal Tooth Thickness
t	5,7312	mm	Tooth Thickness Minimum		2,4835		Chordal Tooth Thickness Minimum
F	50	mm	Face Width				Size Between Pins
-			Chordal Tooth Thickness	dw	5,225	mm	Pin Diameter
	0.860		Chordal Tooth Height	М	302,141	mm	Measurement Between Pins
	212,213		Chordal Tooth Neight		301,753	mm	Measurement Between Pins-Minimum
	312,317						Span Over Teeth
	2,6396		Chordal Tooth Thickness	k	0		Number of Teeth to Span Over
	2,4835		Chordal Tooth Thickness Minimum		-1.271	mm	Span Measurement
			Size Between Pins		-1.128	mm	Span Measurement Minimum
dw	5,225	mm	Pin Diameter		, , ,		Master Gear Test
М	302,141	mm	Measurement Between Pins		0		Master Pitch Diameter
	301,753	mm	Measurement Between Pins-Minimum		0	mm	Test Badius (Max Act)
			Span Over Teeth		0	mm	Test Radius (Min. Act.)
k	0		Number of Teeth to Span Over				AGMA Quality Class
	-1 271	mm	Span Measurement		0 1524	mm	Max Bupout
	1 129	mm	Span Massurament Minimum		0,1324	mm	Ritch Variation
	-1,120		Mastan Case Tast		0,0501	mm	Profile Tolerance
					0,0308	mm	Tooth Alignment Toleranco
	Ŭ		Master Pitch Diameter		0.05843		Tooth to Tooth Composite Televence
	0	mm	lest Radius (Max. Act.)		0,05842	mm	Total Composite Tolerance
	0	mm	Test Radius (Min. Act.)		0,21336		Tooth Thickness Tolerance
	AGMA-Q7		AGMA Quality Class		0,152	mm	Hob Protuboranco
	0,1524	mm	Max Runout			uun dec	Poll Angle at Maiar Diameter
	0,0381	mm	Pitch Variation		26,14	ueg de -	Non Arigie at Iviajor Diameter
	0,0508	mm	Profile Tolerance		25,32	ueg	NUILANGIE aL HE DIAMETER
	0	mm	Tooth Alignment Tolerance		Disis a Data		Dispet Develope 5. 1
	0 05842	mm	Tooth to Tooth Composite Tolerance		Pinion Data		Planet_Revolving_Follower01
	0,03042 0 01004	mm	Total Composite Tolerance	Νр	18	 	Number of Teeth
	0,21350	mm	Tooth Thickness Toloranso	Dp	72	mm	Pitch Diameter
-	0,132			Dpn	72	mm	Pitch Diameter, Normal
		mm	Hob Protuberance	do	80	mm	Major Diameter
	26,14	deg	Roll Angle at Major Diameter	dr	62	mm	Minor Diameter
	25,32	deg	Roll Angle at TIF Diameter	а	4	mm	Addendum
Table	1. Geometric param	eters	s of the internal gear	b	5	mm	Dedendum
	· · · · · · · · · · · · · · · · · · ·		8	х	0		Addendum Modification Coefficient
					0	mm	Addendum Modification
SYMBOL	VALUE	UNIT	TERM	db	67,658	mm	Base Diameter
	Coarse_Pitch_Involute_20deg		Standard	dbn	67,658	mm	Base Diameter, Normal
Pdn	6,35		Normal Diametral Pitch	TIF	67,658	mm	True Involute Form Diameter
Pd	6,35		Diametral Pitch	ht	9	mm	Whole Depth
	4		Normal Modular Pitch	р	12,566	mm	Circular Pitch
m	Δ		Modular Pitch	pn	12,566	mm	Circular Pitch, Normal
øn	20	deg	Normal Pressure Angle		1,2	mm	Fillet Radius
р Ø	20	deg	Pressure Angle	В	0,4	mm	Backlash
٣	20	dog	Heliy Angle	t	5,8832	mm	Tooth Thickness
———	0	ueg		tn	5,8832	mm	Tooth Thickness, Normal

m	4		Modular Pitch
øn	20	deg	Normal Pressure Angle
ø	20	deg	Pressure Angle
	0	deg	Helix Angle
mg	0,237		Ratio, 1:x
С	116	mm	Center Distance
	0	mm	Center Distance Extension
	0	mm	Center Distance Backlash
MA	13,223	mm	Approach Length
MR	9,032	mm	Recess Length
mp	1,885		Contact Ratio

dv

mm Face Width

Size Over Pins m Pin Diameter

Chordal Tooth Thickness Chordal Tooth Height Chordal Tooth Reference Circle

Chordal Tooth Thickness Chordal Tooth Thickness Minimum

50

6,299 67,658

6,5266 6,3844

6,967

М	80,811	mm	Measurement Over Pins	
	80,449	mm	Measurement Over Pins-Minimum	
			Span Over Teeth	
k	0		Number of Teeth to Span Over	
	-5,272	mm	Span Measurement	
	-5,415	mm	Span Measurement Minimum	
			Master Gear Test	
	0		Master Pitch Diameter	
	0	mm	Test Radius (Max. Act.)	
	0	mm	Test Radius (Min. Act.)	
	AGMA-Q7		AGMA Quality Class	
	0,10922	mm	Max Runout	
	0,03048	mm	Pitch Variation	
	0,04064	mm	Profile Tolerance	
	0	mm	Tooth Alignment Tolerance	
	0,0635	mm	Tooth to Tooth Composite Tolerance	
	0,17272	mm	Total Composite Tolerance	
	0,152	mm	Tooth Thickness Tolerance	
	0	mm	Hob Protuberance	
	36,15	deg	Roll Angle at Major Diameter	
	0	deg	Roll Angle at TIF Diameter	

Table 2. Geometric parameters of the planet pinions

SYMBOL	VALUE	UNIT	TERM
	Coarse_Pitch_Involute_20deg		Standard
Pdn	6,35		Normal Diametral Pitch
Pd	6,35		Diametral Pitch
	4		Normal Modular Pitch
m	4		Modular Pitch
øn	20	deg	Normal Pressure Angle
ø	20	deg	Pressure Angle
	0	deg	Helix Angle
mg	0,45		Ratio, 1:x
С	116	mm	Center Distance
	0	mm	Center Distance Extension
	0	mm	Center Distance Backlash
MA	9,032	mm	Approach Length
MR	10,117	mm	Recess Length
mp	1,622		Contact Ratio
	Not Hunting		Hunting Determination
	2052		Hunting Mesh Cycle
	1, 2		Hunting Common Factors
	5.7cpm		Hunting Tooth Frequency
			Pinion RPM
	Gear Data		Sun Fixed01
Np	40		Number of Teeth
Dp	160	mm	Pitch Diameter
Don	160	mm	Pitch Diameter, Normal
do	168	mm	Major Diameter
dr	150	mm	Minor Diameter
а	4	mm	Addendum
b	5	mm	Dedendum
x	0		Addendum Modification Coefficient
	0	mm	Addendum Modification
db	150,351	mm	Base Diameter
dbn	150,351	mm	Base Diameter, Normal
TIF	153,335	mm	True Involute Form Diameter
ht	9	mm	Whole Depth
q	12,566	mm	Circular Pitch
pn	12,566	mm	Circular Pitch. Normal
	1.2	mm	Fillet Radius
В	0,4	mm	Backlash
t	5,8832	mm	Tooth Thickness
tn	5,8832	mm	Tooth Thickness, Normal
t	5,7312	mm	Tooth Thickness Minimum
F	50	mm	Face Width
			Chordal Tooth Thickness
	7.389		Chordal Tooth Height
	153.335		Chordal Tooth Reference Circle
	7.5198		Chordal Tooth Thickness
	7 3743		Chordal Tooth Thickness Minimum
	.,5745		Size Over Pins
dw	6 967	mm	Pin Diameter
M	168 201	mm	Measurement Over Pins
	168 503	mm	Measurement Over Pins-Minimum
	100,505		Span Over Teeth
k	0		Number of Teeth to Span Over
-	000 N-	mm	Span Measurement
	-4,033		spannedsurement

		1	
	-4,182	mm	Span Measurement Minimum
			Master Gear Test
	0		Master Pitch Diameter
	0	mm	Test Radius (Max. Act.)
	0	mm	Test Radius (Min. Act.)
	AGMA-Q7		AGMA Quality Class
	0,13208	mm	Max Runout
	0,03556	mm	Pitch Variation
	0,04572	mm	Profile Tolerance
	0	mm	Tooth Alignment Tolerance
	0,05842	mm	Tooth to Tooth Composite Tolerance
	0,18/96	mm	Total Composite Tolerance
	0,152	mm	Tooth Thickness Tolerance
	20.50	mm	Hob Protuberance
	28,56	deg	Roll Angle at Major Diameter
	11,47	aeg	Roll Angle at TF Diameter
	Disian Data		Disect Develoine Fellower01
Nin	Pinion Data		Planet_Revolving_Follower01
мр Dra	18		Number of Teeth
Dpr	/2	mm	
do	12	mm	Maior Diameter
dr.	80	mm	Minor Diameter
ui 2	62	mm	
u h	- 4	mm	Dedendum
u v			Addendum Medification Coefficient
x			Addendum Modification Coefficient
dh	67.659	mm	Race Diameter
dbp	67,636	mm	Base Diameter Normal
	67,658	mm	True Involute Form Diamotor
ПГ ht	67,638	mm	Whole Depth
n	12 566	mm	Circular Ditch
p nn	12,500	mm	Circular Pitch Circular Bitch Normal
рп	12,500	mm	Fillet Radius
D	1,2	mm	Packlash
ь +	5 8832	mm	Tooth Thickness
tn	5,8832	mm	Tooth Thickness Normal
F	5,8852	mm	Eace Width
			Chordal Tooth Thickness
	6 299		Chordal Tooth Height
	67 658		Chordal Tooth Reference Circle
	6 5266		Chordal Tooth Thickness
	6 3844		Chordal Tooth Thickness Minimum
	3,3044	1	Size Over Pins
dw	6 967	mm	Pin Diameter
M	80,811	mm	Measurement Over Pins
	80.449	mm	Measurement Over Pins-Minimum
	20,110	<u> </u>	Span Over Teeth
k	0		Number of Teeth to Span Over
	-5.272	mm	Span Measurement
	-5.415	mm	Span Measurement Minimum
	e,	Ì	Master Gear Test
	0		Master Pitch Diameter
	0	mm	Test Radius (Max. Act.)
	0	mm	Test Radius (Min. Act.)
	AGMA-Q7	Ī	AGMA Quality Class
	0,10922	mm	Max Runout
	0,03048	mm	Pitch Variation
	0,04064	mm	Profile Tolerance
	0	mm	Tooth Alignment Tolerance
	0.0635	mm	Tooth to Tooth Composite Tolerance
	0,17272	mm	Total Composite Tolerance
	0,152	mm	Tooth Thickness Tolerance
	C	mm	Hob Protuberance
	36,15	deg	Roll Angle at Major Diameter
	0	deg	Roll Angle at TIF Diameter
		-	

Table 3.	Geometric	parameters	of the	sun gear
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

3. TOOTH CONTACT ANALYSIS

The aim of the TCA is to determine and analyse the mechanical parameters into the tooth connection zone by different loads [3, 4]. In our establishment, the sun gear is the pinion that is why it was loaded by different moments. The gear materials are steel (E=210 GPa, v=0.3, isotropic elasticity).

Coordinate systems are defined into the rotation axes

of the gears and the contact zones between the teeth.

The mesh method is tetrahedrons. Body of influence sizing type is defined into the contact zone to enhance the accuracy of the calculation process. The element size is 0.4 mm into the contact zone.

3.1. TCA between the sun gear and the planet pinion

The sun gear is loaded by different moments (40 - 80 Nm, step: 10 Nm). The effect of the load moment is analyzed on the tooth surface of the planet pinion. The mesh distribution can be seen on Figure 4.

Fig. 4. The mesh for connection analysis between the sun gear and the planet pinion

Fig. 5. The distribution of the normal stress on the surface of the planet pinion

The results of the normal stress on the tooth surfaces of the planet pinions can be seen on Figure 5.

Fig. 6. The results of the normal stress in the funtion of the moment on the surface of the planet pinion

The results of the average normal stresses in the function of the moment can be seen on Figure 6. The more the load moment, the more the normal stress on the tooth surface of the planet pinion.

The results of the normal deformations into the 'x' direction on the tooth surfaces of the planet pinion can be seen on Figure 7.

Fig. 7. The distribution of the normal deformation on the surface of the planet pinion

Fig. 8. The results of the normal deformation in the function of the moment on the surface of the planet pinion

The results of the average normal deformations in the function of the moment can be seen on Figure 8. The more the load moment, the more the normal deformation on the tooth surface of the planet pinion.

3.2. TCA between the planet pinion and the internal gear

Considering the gear ratio between the sun gear and the planet pinions, the moments have to be recalculated for the planet pinions since these gears are connected with the internal gear. The calculated moments can be seen on Table 4.

Sun gear	Planet pinions
50 Nm	18 Nm
60 Nm	22.5 Nm
70 Nm	27 Nm
80 Nm	31.5 Nm
90 Nm	36 Nm

 Table 4. The moments on the sun gear and the planet pinions accordingly the gear ratio

The effect of the load moment is analysed on the surface of the internal gear. The meshing strategy is similar than the previous case (Figure 9).

Fig. 9. The mesh for connection analysis between the planet pinion and the internal gear

c) M=27 Nm

Fig. 10. The distribution of the normal stress on the surface of the internal gear

The results of the normal stress on the tooth surfaces of the internal gear can be seen on Figure 10.

The results of the average normal stresses on the tooth surface of the internal gear in the function of the moment can be seen on Figure 11. We got lower stress values since the load moments were lower due to the gear ratio. It is also true the stress is higher if we increase the moment.

Fig. 11. The results of the normal stress in the function of the moment on the surface of the planet pinion

The results of the normal deformations ('x' directional) on the tooth surfaces of the internal gear can

be seen on Figure 12.

a) M=18 Nm

b) M=22.5 Nm

c) M=27 N

d) M=31.5 Nm

Fig. 12. The distribution of the normal deformation on the surface of the planet pinion

The results of the average normal deformations in the function of the moment can be seen on Figure 12. We got much lower results than in case of the previous analysis. The reason is the gear ratio, the lower moment and the mass. It is also true that increasing the load moment on the planet pinion the normal deformation is also increasing on the tooth surface of the internal gear.

Fig. 13. The results of the normal deformation in the function of the moment on the surface of the internal gear

4. CONCLUSION

The vehicle industry is a big filed in the countries that contains two huge fields: vehicle design and vehicle manufacturing. There are more and more vehicles on the roads, consequently the development and the research on this field is actual.

In this study, we designed a complex planetary gear box which is usable in the robotic systems for the vehicle manufacturing.

The geometric parameters was calculated by the help with the GearTeq software. After that, the results could be imported into the SolidWorks three dimensional designer software where the assembly and the motion analysis could be done.

The aim of the TCA is to analyze the mechanical parameters into the tooth connection zone of the gear pairs by different loads. In our case, the load was the moment on the pinions. Firstly, we analyzed the TCA parameters between the sun gear and the planet pinion. Four planet pinions were used around the perimeter of the sun gear. Secondly, we analyzed the same parameters between the planet pinion and the internal gear. In this case, the moments had to be recalculated accordingly the gear ratio from the sun gear, which is the pinion, to the planet pinions, which are intermediary gears. We made diagrams from the results and evaluated the overall analysis. This analysis process is necessary to control the correctness and the function of such gear systems before the real installation into the machines [8].

5. REFERENCES

- https://hu.wikipedia.org/wiki/Bolyg%C3%B3m% C5%B1
- [2] Bodzás, S., Békési, Zs., Ketész, J., Szorcsik, T.: The CAD modelling possibilities of the GearTeq 2021 software in the mechanical engineering practice, International Journal of Engineering and Management Sciences, Debrecen, 2021, (under review)

- [3] Litvin, F. L., Fuentes, A. A.: Gear Geometry and Applied Theory, Cambridge University Press, 2004, ISBN 978 0 521 81517 8
- [4] Litvin, F. L., Fuentes. A. A., Vecchiato, D., Gonzalez-Perez, I.: New Design and Improvement of Planetary Gear Trains, NASA Center for Aerospace Information, 2004, p. 32, https://ntrs.nasa.gov/api/citations/20040086788/do wnloads/20040086788.pdf
- [5] Goldfarb, V., Trubachev, E., Barmina, N.: Advanced Gear Engineering, Springer, 2018, p. 197., ISBN 978-3-319-60398-8
- [6] Rackov, M., Knežević, I., Čavić, M., Penčić, M., Čavić, D., Kuzmanović, S. Design Solutions Overview of Universal Motor Gear Drives with Helical Gears, 10th International Symposium on Graphic Engineering and Design (GRID 2020), Novi Sad, Serbia, 12-14 November 2020, pp. 597– 608, https://doi.org/10.24867/GRID-2020-p68
- [7] Radzevich, S. P.: Dudley's Handbook of Practical Gear Design and Manufacture, Third edition, CRC Press, 2016, p. 656, ISBN 9781498753104
- [8] Golebski, R., Boral, P.: Study of Machining of Gears with Regular and Modified Outline Using CNC Machine Tools, Materials 14 (11): 2913, 2021, DOI:10.3390/ma14112913
- [9] Terplán, Z., Apró, F., Antal, M., Döbröczöni, Á.: Fogaskerék-bolygóművek, Műszaki könyvkiadó, Budapest, 1979, p. 258

ACKNOWLEDGEMENT

Project no. TKP2020-NKA-04 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the 2020-4.1.1-TKP2020 funding scheme.

Authors:

Sándor Bodzás, Ph.D., Deputy head of department, associate professor, University of Debrecen, Department of Mechanical Engineering, Hungary, e-mail: <u>bodzassandor@eng.unideb.hu</u>

Zsolt Békési, assistant lecturer, University of Debrecen, Department of Air- and Load Vehicle, e-mail: zsolt.bekesi@eng.unideb.hu

József Kertész, technical assistant, University of Debrecen, Department of Air- and Load Vehicle, e-mail: kertesz.jozsef@eng.unideb.hu

Tamás Szorcsik, mechanical engineer, TRIGON Electronica Ltd., Salgótarján, Hungary, e-mail: tamas.szorcsik@trigone.hu