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A B S T R A C T 

This paper provides a comprehensive review of research on the influence of machining 

parameters—depth of cut, feed rate, and cutting speed—on surface roughness, with a 

focus on aluminum alloys. Surface quality in CNC machining is significantly affected 

by these parameters, with numerous studies highlighting their impact on achieving 

desired surface roughness. The review analyzes findings from ten studies, emphasizing 

that feed rate is generally identified as the most influential parameter for surface 

roughness. While feed rate shows a dominant effect, cutting speed and depth of cut 

also contribute, though to a lesser extent. The research includes a discussion of 

various methodologies, including ANOVA, the Taguchi method, and more simple 

machine learning regression models, which demonstrate strong alignment with 

experimental results and highlight the effectiveness of advanced regression-based 

models in predicting surface roughness. The study concludes that optimizing feed rate 

is crucial for achieving high surface quality values, while cutting speed and depth of 

cut should be managed appropriately. The findings underscore the importance of 

machine learning tools in analyzing and optimizing machining parameters, offering 

practical guidance for CNC machine operators and engineers. 
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1.  INTRODUCTION  

Machine learning, although present in the scientific world 

for more than seven decades [1], has gained significant 

attention in recent years and is becoming increasingly 

integrated into the daily lives of a growing number of 

people, particularly younger generations who aim to 

engage in various projects within the fields of computer 

science as well as other scientific disciplines [2], [3]. The 

automotive industry, architecture, medicine, biology, 

education, mechanical and petroleum industries are just a 

few sectors increasingly relying on the application of 

machine learning, which involves the implementation of 

large datasets in complex algorithms [4], [5]. Since 2014, 

machine learning has gained growing prominence in 

industrial production settings, particularly in the 

optimization of operating parameters [6], and has also 

found applications in reducing errors during manufacturing 

[7]. 

Despite the widespread presence of machine learning and 

artificial intelligence across all sectors, as noted in [8], the 

level of integration of artificial intelligence across different 

disciplines still largely depends on workers’ trust in 

decisions made by AI systems. This trust significantly 

depends on the workers' understanding of the technologies 

underlying artificial intelligence and machine learning [9], 

the specific environment, and the technology itself [10]. A 

lack of transparency in machine learning models for certain 

groups of people can lead to uncertainty within these 

groups regarding the decisions made by such models [11]. 

However, production needs to stay up with advancements 

[12] and it must be accepted that artificial intelligence and 
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machine learning are becoming integral components of 

every industry [13], especially when it comes to optimizing 

production time and, consequently, the economic aspects 

of production. This is confirmed by scientific 

achievements realized through the use of machine learning 

in recent years, which, before the intensive use of machine 

learning, were believed to require decades to achieve using 

traditional statistical methods [14], [15]. Therefore, it is 

important to familiarize the wider public with the 

fundamentals of machine learning, especially younger 

generations, who, according to [16], should be introduced 

to the basics of machine learning during secondary 

education. 

The aim of this paper is to raise awareness among the 

broader population about the technical aspects of machine 

learning, particularly regression models, through their 

specific application in analyzing factors that influence the 

surface roughness during CNC milling. 

2.  FUNDAMENTAL PRINCIPLES OF MACHINE LEARNING  

Although the terms machine learning and artificial 

intelligence are closely related, they do not have the exact 

same meaning [17]. Machine learning served as the 

foundation for the development of artificial intelligence 

[18]. Today, artificial intelligence is extensively used for 

advancing machine learning, and thus, these two 

disciplines complement each other. 

Machine learning is based on the implementation and 

improvement of more or less complex algorithms (shallow 

or deep learning [19]), through which a computer (machine) 

can independently propose a solution to a given problem 

without prior programming for the specific query [18]. By 

enhancing these algorithms, the machine learns 

experientially, using a trial-and-error method, and begins 

to recognize certain patterns of reasoning based on the 

information entered into the system [20]. 

There are four basic techniques through which a 

machine learns [21], [22]: 

1. Supervised Learning; 

2. Unsupervised Learning; 

3. Semi-Supervised Learning; and 

4. Reinforcement Learning. 

However, in addition to these four types of machine 

learning, it is important to mention self-supervised learning, 

which, according to authors [23], [24], has been intensively 

developed in recent years. 

2.1  Supervised Learning 

Supervised machine learning represents a type of machine 

learning in which the model is trained to understand the 

relationship between input (features) and output (label) 

data [25] and to learn a certain regularity that connects the 

given data, thus being able during the test or when it is 

deployed to make specific numerical predictions or 

classifications for queries directed to it [26]. This form of 

machine learning is called supervised because the data fed 

into the model are supervised by humans or a team of 

experts who create it [27]. Without data to feed into the 

model, it is impossible to create a model, making data 

collection a necessary operation before starting any 

training of the model [28]. To ensure that the model, after 

training, testing, and deployment, performs its task at the 

highest level of accuracy, it is essential to provide precise 

real-world data during programming, as the quality of 

decisions and solutions offered by the machine learning 

model directly depends on the quality and quantity of data 

entered during its creation [29]. According to [30], data 

collection represents an extensive task, consuming 80-90% 

of the time required for the development of a machine 

learning model. Great attention must be paid to the quality 

of the input data, as incorrect data could negatively impact 

the quality of the final product, so both feature and label 

data accuracy must not be overlooked [31], [32]. 

Supervised machine learning is generally divided into two 

areas: regression and classification [33]. This paper will 

primarily focus on regression models of supervised 

machine learning and their practical application in 

analyzing parameters that affect the surface roughness. 

2.1.1  Regression Models in Machine Learning 

Regression models are among the fundamental and, 

according to [34], some of the most important machine 

learning models. They are often the starting point for 

solving mathematical and statistical problems across 

various industrial sectors [35]. There are numerous 

regression models or higher machine learning models 

based on regression, as noted by the author in [36], who 

identifies 77 different regression models, grouped into 19 

categories. Furthermore, regression models are among the 

fastest-developing models when it comes to improving 

machine learning techniques. 

At their core, regression models represent a statistical 

method based on mathematical functions and input 

(feature) and output (label) data used to generate the 

machine learning model [35], [37]. The mathematical 

functions are created by the model itself as it identifies the 

interaction between input (independent) and output 

(dependent) data [38], [39].  

Based on the input and output data entered during model 

creation and the mathematical relationships formed, the 

final model is expected to provide certain predictions, 

forecasting changes in the dependent variable in relation to 

changes in independent variables [35]. Typically, once 

created to solve a particular problem, regression models are 

used to compute regression coefficients and evaluate the 

accuracy of the model through squared error analysis [37]. 

In the following sections, the practical application of 

regression models in machining processes will be 

discussed. 

3.  PARAMETERS AFFECTING SURFACE ROUGHNESS 

An important parameter in the manufacturing industry is 

the surface roughness. This parameter can significantly 

influence the quality of the product, noise and vibration 

during operation in a mechanical assembly, corrosion 

resistance, wear resistance, and more [40], [41], [42]. 
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According to [43], the surface roughness during milling 

largely depends on three parameters: feed rate, depth of 

cut, and cutting speed. Variations in these parameters are 

typically used to achieve the desired surface quality. The 

selection of these parameters must be done wisely, as in 

addition to achieving the desired surface roughness, the 

condition of the cutting tool itself must be considered, as 

the state of the tool can directly affect surface roughness 

[44]. Increasing cutting forces to achieve high-intensity 

production can place significant stress on the cutting tool, 

leading to overheating due to increased friction, especially 

during the machining of high-hardness steel, which can 

result in damage to the cutting elements [45]. 

Additionally, authors [46], [47], [48] emphasize the 

importance of coolant characteristics and the cutting tool 

itself—such as the characteristics of the cutting edges 

(angle), tool wear (sharpness), tool positioning, etc.—in 

influencing surface quality during milling operations. 

However, according to [43], varying the cutting parameters 

(feed rate, cutting speed, and depth of cut) is considerably 

more effective in achieving the desired surface quality than 

varying other factors that affect the surface roughness (e.g., 

cutting tools, coolants, lubricants). Inadequate cutting 

speed is cited by [49], [50] as one of the primary causes of 

tool vibrations, which negatively impact surface 

roughness. Inappropriate cutting parameters can also lead 

to tool damage and breakage, which, according to [51], 

[52], accounts for 7-20% of all machine downtimes during 

CNC machining processes. Therefore, it is necessary to 

precisely determine cutting parameters and adequately 

select tools before machining operation. According to [53], 

once the cutting tool for a particular operation has been 

selected, it is essential to adjust key parameters to achieve 

higher surface quality for a workpiece made from a 

specifically selected material. Otherwise, poor selection of 

machining parameters may extend production time, 

negatively affect the surface roughness, and increase 

production costs (in the case of scrap) [41]. 

Every cutting tool comes with manufacturer-prescribed 

specifications. Programming a machine according to the 

parameters for optimal tool operation within the 

manufacturer’s recommended range will not always yield 

the desired surface roughness for every material, as surface 

roughness is not solely dependent on cutting parameters, 

but also on the material from which the workpiece is made 

[54]. 

Tool performance, when it comes to achieving high surface 

quality values, largely depends on tool wear, which is 

influenced by the time and method of tool use, as well as 

the quality of the coolant (if used during the machining 

process) [53]. However, if a coolant is not used during the 

machining process, the process must be strictly designed to 

minimize the heating of the workpiece and the tool, which 

can be achieved by reducing the cutting forces [55]. 

According to [56], the wear of the cutting tool affects the 

stability of the entire machining process, as an overly worn 

tool cannot achieve the required surface roughness, making 

premature tool replacement necessary [57]. In the process 

of identifying the most suitable cutting parameters that 

would extend the tool's lifespan while primarily ensuring 

the desired surface roughness for a specific material, 

regression models of supervised machine learning, as well 

as higher models based on regression, can be of significant 

help [7], [49]. According to [58], the machine learning 

model can predict the surface roughness based on cutting 

forces. 

4.  MACHINE LEARNING MODELS IN CNC 

MANUFACTURING PROCESSES 

When discussing the application of machine learning in the 

manufacturing sector, regression models were among the 

first to be implemented for optimizing and better 

controlling material processing methods such as milling, 

turning, and drilling [37]. According to [56], regression 

models can be applied across various operations and phases 

of CNC machining: tool condition monitoring, surface 

roughness estimation, economic aspects of production 

processes, and more. Practice has shown that regression 

models perform well when the relationship between input 

and output parameters is nearly linear [59].  

The implementation of a model developed to determine 

machining parameters for a specific material, based on the 

desired surface finish quality, can significantly accelerate 

both the preparation process for machining components 

and the programming process for CNC machines [48]. As 

the author [7] suggests, machine learning can enhance 

productivity and efficiency in the production of 

components during CNC manufacturing. Furthermore, 

according to [6], regression-based machine learning 

models could be used to optimize production time, reduce 

scrap, and minimize energy consumption during the 

production of machine elements, which, as noted by [60], 

is an imperative in many industries and enterprises. Any 

savings in energy and time during the production of any 

component can have a significant impact on the overall 

economic efficiency of the manufacturing process [7]. 

Such savings can be achieved by improving industrial 

processes, providing a competitive advantage to companies 

that implement modern technologies and production 

approaches (e.g., Lean production) over their competitors 

[61]. 

Additionally, regression models can predict the preventive 

replacement timing of cutting tools  [44]. Replacing tools 

before they wear out positively affects machining speed 

and surface roughness [52]. Studies indicate that well-

developed preventive replacement strategies can reduce 

downtime by up to 75% [44]. A worn tool will not provide 

the same surface roughness as a brand-new tool, so in the 

case of tool wear, it is necessary to stop the machine and 

replace the old tool with a new one. To achieve full 

automation in CNC milling, precise data on the tool's 

condition during the machining process are essential [51]. 

Developing a model for predicting the condition of the 

milling tool and estimating the remaining tool life is a 

challenging task because, according to [52], under different 

production conditions where cutting regimes and 

workpiece materials vary, it is not always easy to predict 

when the tool will become worn enough during the 

material removal process to produce an unsatisfactory 
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surface finish or even generate scrap [44]. The preparation 

for developing such models may involve an extensive 

process of monitoring the condition of the milling tool to 

provide adequate and precise input data for creating 

machine learning models [62]. A detailed approach to 

determining the remaining tool life requires the application 

of advanced machine learning models (e.g., according to 

[63], the ANFIS (Adaptive Neural Fuzzy Inference 

System) model) [62]. However, according to [44], methods 

for addressing this issue are still under development and do 

not yet achieve the highest possible accuracy; therefore, 

this operation will not be given special attention in this 

paper. It is evident, as confirmed by the author [7], that 

there is a very broad range of applications for supervised 

machine learning regression models in CNC production, 

and this paper will focus on their consideration, 

emphasizing the analysis of parameters that influence 

surface roughness. 

5.  IMPACT OF MACHINING PARAMETERS ON SURFACE 

ROUGHNESS: A REVIEW OF EXISTING RESEARCHES 

As previously noted, surface quality depends significantly 

on the workpiece material, cutting tool characteristics, and 

machining parameters [43], [44], [45], [54]. Numerous 

authors have concluded that three factors - depth of cut, 

feed rate, and cutting speed - are the most influential in 

achieving the desired surface quality. Authors [43], [46], 

[47], [48], [49], [50], [53], [64], [65], [66], [67], [68], [69], 

[70], [71], [72], [73], [74], [75], [76], [77] have used these 

parameters in experiments and machine learning models. 

Additionally, the fact that surface roughness solely 

depends on cutting parameters is confirmed by the 

observation that as much as 94% of all previous scientific 

studies dealing with surface roughness have used basic 

cutting parameters as input experimental data [43]. 

The optimization of cutting processes is a crucial aspect of 

machining elements, with significant impacts on time and 

economic savings. The analysis in this chapter is based on 

10 studies that aimed to identify which of the three main 

milling parameters - depth of cut, feed rate, or cutting speed 

has the most significant impact on the surface roughness 

during the machining of the aluminum alloys. The 

reviewed studies aimed to improve machining process 

optimization, focusing on the parameter with the greatest 

impact on achieving high surface quality within a 

reasonable time frame. The research by all authors [49], 

[68], [69], [70], [71], [73], [74], [75], [76], [77] is based on 

an experimental approach aimed at providing input 

parameters for further research and statistical data 

processing using regression models or machine learning 

models based on regression (Taguchi method and 

ANOVA). The analysis of different authors’ works strives 

to identify certain correlations among the results of the 

observed studies. 

Y.-C. Lin et al. [49] used neural networks and multiple 

regression to conclude that cutting speed and depth of cut, 

in various combinations, had the most significant effect on 

the surface roughness of aluminum alloy Al6061. By 

applying the regression model to estimate surface rougness 

based on parameters obtained through experimental 

methods, the coefficient of determination was 0.82, and the 

root mean square error (RMSE) was 7.57%. 

R. A. Salman Hussain et al. [68], through the experiments 

on aluminum alloy Al7075-T7351, applied various cutting 

parameter values to determine the optimal balance between 

cutting parameters that would provide the highest possible 

surface quality values while minimizing machining time. 

The paper describes the application of a predictive model 

for surface roughness based on input cutting parameters. 

By processing experimentally obtained data using 

Response Surface Methodology (RSM), they concluded 

that the key to process optimization is increasing cutting 

speed and feed rate while reducing depth of cut. The model 

predicted values of surface roughness relative to actual 

parameters with an error of 3.29%. 

In addition to the three primary parameters being varied, 

A. Yeganefar et al. [69] also considered the type of cutting 

tool used for machining aluminum alloy AA 7075-T6. By 

applying various data processing methods, including a 

machine learning regression model, they concluded that, in 

most cases, the feed rate had the greatest impact on surface 

roughness, accounting for as much as 45.81%. They also 

found that predictions made by neural networks were 

significantly more accurate than those from traditional 

regression models, such as Support Vector Regression 

(SVR). Thus, they suggested that regression models could 

be used for surface roughness prediction when high 

precision is not required. 

Similarly, S. Sakthivelu et al. [70], through 

experimentation on aluminum alloy Al 7075 T6 and using 

the ANOVA method to determine the contribution 

percentage of cutting parameters to surface roughness, 

concluded that feed rate is the most influential parameter 

in achieving high surface quality values. Specifically, feed 

rate impacts the surface quality by 51.26% compared to 

other cutting parameters. Therefore, in processes aimed at 

achieving the highest surface finish quality while also 

maximizing material removal rate, feed rate is the most 

critical factor. 

During the experiment on aluminum alloy Al 7075 using a 

10 mm wolfram-carbide milling cutter, R. N. Nimase and 

P. M. Khodke [71] aimed to determine which of the three 

cutting parameters has the greatest impact on surface 

roughness. By applying the ANOVA method, they 

concluded that feed rate, with a contribution of 46.36%, has 

the most significant influence on surface roughness among 

the observed parameters. 

M. B. Kumar et al. [73], in their experiment on aluminum 

alloy Al–SiC–B4C, analyzed the measurement results 

using the ANOVA method and concluded that feed rate is 

the most significant cutting parameter for surface quality, 

with a contribution of 86.6%. The study also employed the 

Taguchi method, which corroborated this finding. The 

authors determined that the optimal cutting parameters for 

achieving the highest surface finish quality are: feed rate of 

0.1 mm/rev, cutting speed of 3000 rpm, and depth of cut of 

0.2 mm. 

M. H. Raza et al. [74], by varying cutting parameters 

during the machining of aluminum alloy Al6082-T6 with 
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and without lubrication (MQL), found that feed rate has the 

most significant impact on surface roughness, contributing 

60% in both cases, whether during dry machining or 

machining with lubrication. Cutting speed has a 

considerably smaller impact on surface roughness, around 

30%, while the effect of varying depth of cut within the 

investigated range is nearly negligible. These results, 

obtained using ANOVA and Taguchi methods, also led to 

the conclusion that machining with lubrication yields a 

surface finish quality that is 26-30% higher compared to 

dry machining when the same cutting parameters are used. 

C. David et al. [75] analyzed experimental results from 

machining aluminum alloy AlZn5.5MgCu and concluded 

that there is a direct relationship between cutting 

parameters (particularly depth of cut and feed rate), and 

surface roughness. Their experiment, which focused on 

milling, found that excessive values for depth of cut and 

feed rate could lead to overloading of the cutting tool, 

resulting in insufficient surface quality. 

B. Öztürk and F. Kara [76], by varying cutting parameters 

(depth of cut, feed rate, and cutting speed), concluded using 

Taguchi and ANOVA methods that the most influential 

factor for achieving the highest surface quality values is 

cutting speed, with an influence of 36.18%. In contrast, the 

variation in depth of cut has the least significance, 

accounting for only 9.62% during the milling of aluminum 

alloy Al T6061. 

I. P. Okokpujie et al. [77] aimed to develop a regression 

model using least squares approximation and RSM to 

predict the surface roughness of aluminum alloy Al 6061 

during milling. Based on thirty measurements taken during 

the experiment, machine learning models were developed. 

The authors concluded that, within the domain of 

experimental research, the model based on least squares 

approximation achieved an accuracy of 99%, while the 

RSM model provided a precision of 99.6% in predicting 

surface quality. Additionally, using the ANOVA method, 

it was concluded that feed rate was the most influential 

factor on the surface roughness during the milling of this 

aluminum alloy, whereas variations in depth of cut had the 

least impact on the quality of the surface finish. 

6.  DISCUSSION OF RESEARCH RESULTS 

Analyzing the data collected from ten different studies on 

the impact of cutting parameters on the surface roughness 

of aluminum alloys reveals a clear pattern among various 

authors. Most of the analyzed research highlights that feed 

rate is the most significant factor affecting surface quality. 

Feed rate has been identified as a key factor for achieving 

high surface quality values in seven of the studies reviewed. 

This conclusion suggests that particular attention should be 

paid to the precise determination and definition of feed rate 

values when programming the machine, in order to achieve 

the highest quality surface finish while optimizing 

machining time. 

In addition to feed rate, several studies emphasize the 

significance of cutting speed and depth of cut. Although 

fewer research papers highlight these parameters as 

primary factors, the fact that cutting speed and depth of cut 

can significantly affect surface roughness, albeit to a lesser 

extent compared to feed rate, should not be overlooked. 

Detailed analysis of studies that suggest cutting speed and 

depth of cut as the most influential parameters indicates 

that cutting speed has a notably greater impact on surface 

roughness compared to depth of cut. Most authors suggest 

that variations in depth of cut have a negligible to 

moderately high effect on the quality of the surface finish 

in CNC milling within the tested range. 

Analyzing the machine learning models used in the 

reviewed studies reveals that regression-based machine 

learning models, including more advanced regression-

based models, are highly popular tools for analyzing and 

predicting surface finish quality. The studies reviewed 

employed various data analysis methods, including 

ANOVA, the Taguchi method, and regression-based 

machine learning models. Moreover, in most studies, the 

final results provided by the software closely match the 

actual experimental results. This strong alignment suggests 

that trust in decisions made by machine learning models 

should be elevated, recognizing their reliability in 

predicting and analyzing surface roughness. 

To sum up, the analysis underscores the critical importance 

of feed rate as the most influential cutting parameter on the 

surface finish quality of aluminum alloys. While cutting 

speed and depth of cut are also significant, their impact is 

considerably less. To achieve high surface quality values 

in CNC milling, particular attention must be given to 

optimizing the feed rate. Properly setting this parameter 

can enhance surface quality while maximizing material 

removal rates. Furthermore, the use of basic regression 

models as well as advanced analytical tools based on 

regression, such as neural networks, can greatly aid in 

understanding the complexities of optimizing parameters 

in CNC machining.  

7.  CONCLUSION 

Machine learning regression models, as well as more 

advanced models based on regression, find widespread 

application in CNC manufacturing. This research aimed to 

highlight the importance of understanding the principles 

behind regression models and to raise awareness of the 

pervasive role of machine learning in manufacturing 

engineering. In addition to these general goals, the study 

focused on the relatively narrow application of machine 

learning models in the analysis of cutting parameters and 

the assessment of surface quality.  

The research concludes that the identification of feed rate 

as a key factor can provide significant guidance to 

engineers and operators working on CNC machines when 

processing aluminum alloys. Understanding the impact of 

cutting parameters can enable optimization of the 

machining process, leading to increased efficiency in 

production, reduced energy consumption, lower 

manufacturing costs, and decreased waste. Additionally, 

considering all these factors can directly contribute to 

enhanced market competitiveness. 

Furthermore, this research could serve as a foundation for 

the development of more advanced systems aimed at 
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achieving a high degree of automation in CNC machining, 

which could automatically adjust cutting parameter values 

to achieve the desired machining quality with optimal time 

consumption. 

In addition to benefiting engineers and operators actively 

involved in CNC production, the findings of this study 

could also serve as valuable material for the education and 

training of new engineers and workers in manufacturing 

engineering, offering them a deeper understanding of 

machining processes and aluminum alloy cutting 

parameters. Education based on scientific research can 

significantly contribute to improving practical skills and 

knowledge, which in turn can result in enhanced efficiency 

during the production process. 

Since this paper provides a detailed literature review on 

cutting parameters and their influence on the surface 

quality of aluminum alloys after machining, future 

research could be directed towards experimental work. 

Specifically, the conclusions drawn from the theoretical 

literature review in this study could serve as a solid 

foundation for developing independent research. The goal 

of such research would be to create a machine learning 

regression model to identify the impact of cutting 

parameters (cutting speed, depth of cut, and feed rate) on 

surface roughness. 
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