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A B S T R A C T 

This study presents the development of artificial neural network models capable of 

classifying the type of vibration during the step drilling process. Classification refers 

to recognizing the nature of vibrations during the machining process and categorizing 

them into two classes: safe and harmful. The data used in the study were obtained 

from Bosch and collected during the aforementioned machining process on a four-

axis horizontal CNC machining center. Several different architectures of artificial 

neural networks have been developed, and their performance (with a classification 

success rate of around 96%) has shown that they can be applied as a highly useful 

tool in predictive maintenance. 
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1. INTRODUCTION

Companies that follow the trends of smart production base 

the success of their business on recording, collecting and 

processing data in all stages of production, which is the 

meaning of Industry 4.0. The concept of Industry 4.0, 

which includes disciplines such as: Internet of Things (IoT), 

Internet of Services (IoS), Artificial intelligence (AI), and 

data mining (DM), enables working with big data and 

exploiting it with the aim of forming an adequate 

maintenance strategy. K. Wang et al. classify maintenance 

strategies into three groups: corrective maintenance, 

preventive maintenance, and predictive maintenance [1]. 

Corrective maintenance is undertaken to pinpoint and 

address the root causes of failures in a malfunctioning 

system. It emphasizes identifying failures based on their 

manifestations, which may include multiple symptoms. 

Preventive maintenance refers to scheduled maintenance 

tasks and inspections performed on equipment or systems 

to prevent potential issues, ensure optimal performance, 

and extend their operational lifespan. This approach aims 

to detect and address minor problems before they escalate 

into more significant failures or downtime. Predictive 

maintenance is a proactive approach that utilizes data 

analysis and machine learning techniques to predict 

equipment failures and schedule maintenance tasks 

efficiently. By leveraging advanced technologies such as 

sensor data and analytical methods, predictive maintenance 

aims to optimize maintenance processes, prevent failures, 

and reduce unnecessary maintenance costs [2-4]. This 

strategy has gained significant traction within the Industry 

4.0 framework, enabling effective monitoring of industrial 

systems to enhance operational efficiency and reduce 

downtime [5,6]. Machine learning algorithms play a 

crucial role in predictive maintenance by enabling real-

time assessment of equipment health, thereby enhancing 

safety, reducing hazards, and improving overall equipment 

performance [7]. These algorithms analyze operating and 

faulty condition data to predict future machine conditions, 

facilitating informed decision-making regarding 

maintenance actions [8,9]. Moreover, the application of 

machine learning and deep learning techniques in 

predictive maintenance has been instrumental in 

addressing key research areas such as failure prediction, 

remaining useful life (RUL), and root cause analyses (RCA) 

[10]. Predictive maintenance not only optimizes 

maintenance schedules but also contributes to sustainable 

manufacturing systems by minimizing failures that lead to 

production losses and energy wastage [5,6]. By integrating 

information from various machines and manufacturing 

systems, IoT platforms provide crucial support for 

predictive maintenance, enabling comprehensive data 
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analysis and decision-making [11]. Furthermore, the 

implementation of automatic forecasting models based on 

machine learning approaches enhances the recognition of 

machine failures and aids in the development of algorithms 

for preventive and descriptive maintenance [12]. Predictive 

maintenance in CNC machines technology has become a 

crucial aspect in the era of Industry 4.0, where advanced 

technologies like artificial intelligence and machine 

learning are leveraged to enhance efficiency and reduce 

downtime [13]. Utilizing machine learning techniques for 

remaining useful life prediction, such as neural networks, 

has shown promising results in improving maintenance 

strategies [14]. For instance, the reliability prediction of 

CNC machine tool spindles has been enhanced through 

optimized cascade feedforward neural networks, leading to 

more accurate predictions and improved reliability [15]. 

Moreover, fault detection in CNC machinery has been 

significantly improved through the integration of deep 

learning and genetic algorithms, enabling early fault 

detection and prevention of costly downtime and safety 

risks [16]. Additionally, fault diagnosis of CNC machine 

tools has been enhanced by optimizing neural networks, 

which can effectively detect faults based on differences 

between system output and neural network output [17]. 

Furthermore, the application of artificial neural networks 

in predicting CNC machine health has been highlighted as 

a vital component of condition-based maintenance to 

prevent malfunctions proactively [18]. Additionally, the 

prediction of thermal errors in CNC machine tools using 

artificial neural networks has been proposed as a method to 

improve machining accuracy by compensating for thermal 

errors effectively [19]. Predictive maintenance, driven by 

data-driven approaches and machine learning algorithms, 

represents the future of maintenance strategies in various 

industries. By harnessing the power of advanced 

technologies, organizations can proactively manage their 

equipment, optimize maintenance processes, and ensure 

operational efficiency. The integration of advanced 

technologies like neural networks and machine learning 

has revolutionized predictive maintenance in CNC 

machines, enabling more accurate predictions, early fault 

detection, and proactive maintenance strategies to enhance 

reliability and efficiency in manufacturing processes. 

The motivation behind this research stems from the critical 

importance of predictive maintenance in CNC machine 

technologies. Specifically, the focus is on developing 

artificial neural network models for classifying vibrations 

during the machining process. These models aim to 

significantly enhance the predictive maintenance of CNC 

machining systems by accurately classifying vibration data 

as either safe or potentially detrimental to the machining 

process. 

2.  METHODOLOGY 

The primary aim of this research is to develop artificial 

neural network (ANN) models for classifying vibrations 

occurring on the spindle housing during the step drilling 

process. Step drilling is a crucial process in various 

industries, especially in applications like drilling through 

printed wiring boards (PWBs) and composite materials. 

Step drilling involves drilling through holes using several 

cutting feeds, which is essential for preventing micro-drills 

from breaking [20]. Research has shown that employing a 

rapid-feed step-drilling cycle with appropriate steps and 

feed rates can enhance hole quality and processing 

efficiency compared to conventional non-step drilling 

methods [21]. The dataset used for model development 

originates from the Bosch company database, comprising 

data collected during the step drilling of an aluminum 

workpiece on a four-axis horizontal CNC machining center 

[22]. The process parameters included were: Spindle 

speed=15000rpm and Feed=100mm/min. The inputs to the 

ANN models are acceleration values for each of the three 

axes (X, Y, and Z) separately. The output indicates 

membership in one of two classes: safe vibrations and 

harmful vibrations. These outputs are determined based on 

the database used and information about the dimensional 

accuracy of the machined parts. Vibrations that caused 

dimensional inaccuracies in the parts are classified as 

harmful, while vibrations that did not affect the 

dimensional accuracy of the part are classified as safe in 

this specific case. Data acquisition was achieved indirectly 

by gathering accelerometer data from Bosch CISS sensors 

installed on the rear end of the spindle housing (Figure 1). 

 

.  

Fig. 1 Schematic sketch of the experimental setup: 4-axis machining 
center with mounted sensor [22]. 

 

The rear location remains unaffected by extreme 

machining conditions such as coolant and material chips, 

making it feasible to retrofit new sensors onto existing 

machines ('brownfield machines'). The sensor consistently 

maintains its position relative to the tool center point, with 

its three accelerometer axes aligned with the machine's 

linear motion axis. Using the tri-axial CISS sensor, 

acceleration data is collected with a sampling rate of 2 kHz. 

The total number of datasets used is 175.111 samples. 

Table 1 displays several datasets belonging to the defined 

classes. 

Table 1 – Dataset (separated samples). 

Acc X, Y and Z axis 

(mm/s2) 

Safe 

vibration  

Harmful 

vibration 

70 93 -1098 1 0 

0 70 -1139 1 0 

579 396 -1729 0 1 

107 124 -2490 0 1 

70 -107 -1059 1 0 

… … … … … 
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3.  ARTIFICIAL NEURAL NETWORK MODEL FOR 

CLASSIFICATION 

To optimize the process parameters and ensure high-

quality workpieces, neural networks can be employed. 

Neural networks have been utilized in various fields for 

prediction, classification, and data denoising [23]. 

Specifically, in the context of machining operations like 

step drilling, neural networks can be trained using 

frequency spectra reflecting tool and workpiece 

oscillations to detect manufacturing defects [24]. Process 

parameters in drilling operations, such as the selection of 

drilling fluids, play a crucial role in the efficiency and 

effectiveness of the process. Automated tools utilizing 

geometric parameters have been developed to predict 

drilling fluid performance with high accuracy, contributing 

to the automation of drilling operations [25].  

Additionally, noise reduction techniques based on neural 

networks have been proposed for machining processes, 

indicating the potential for enhancing the quality of 

workpieces by reducing unwanted noise during operations 

[26]. The application of neural networks in predicting 

machining deviations, such as in gear autonomous 

machining, demonstrates the capability of these models to 

improve detection accuracy and operational speed, leading 

to better quality outcomes in the production of workpieces 

[27]. Furthermore, neural networks have been used in 

predicting rotor machining errors, showcasing their 

nonlinear fitting ability and potential for addressing 

complex machining challenges [28].  

In conclusion, the integration of neural networks in step 

drilling operations can significantly impact the process 

parameters and the quality of workpieces. By leveraging 

neural networks for tasks such as defect detection, fluid 

selection, noise reduction, and deviation prediction, 

manufacturers can enhance the efficiency, accuracy, and 

overall quality of their machining operations.  

In this research, several feedforward artificial neural 

network models were created with varying numbers of 

hidden layers and neurons in them. Additionally, different 

training algorithms for artificial neural networks were 

employed. A sigmoidal activation function was used in the 

hidden layers of all neural network architectures. Table 2 

displays the best-performing artificial neural network 

models along with information about their basic 

parameters. All the mentioned Artificial Neural Network 

(ANN) architectures demonstrated considerable potential 

in tackling the classification problem, with each showing 

comparable performance in terms of classification 

accuracy and success rates. Below, we present a detailed 

analysis of one specific ANN model using two key 

evaluation metrics: the Confusion Matrix and the Receiver 

Operating Characteristic (ROC) curve. 

In particular, this ANN model, trained using the 

Levenberg-Marquardt algorithm, incorporates two hidden 

layers, each consisting of 12 neurons. The model 

successfully achieved a Mean Squared Error (MSE) of 

0.027, indicating high accuracy in its predictions (as 

illustrated in Figure 2).  

Table 2 - Developed models of artificial neural networks and their 
performance. 

Number 

of 

hidden 

layers 

Number of 

neurons in 

hidden 

layers 

Training 

algorithm 

Performance: 

Mean 

squared 

error 

(MSE)/Cross 

Entropy (CE) 

1 12 
Bayesian 

Regularization 
0.027 (MSE) 

1 18 
Levenberg-

Marquardt 
0.028 (MSE) 

1 36 

Gradient 

Descent with 

Momentum 

0.11 (CE) 

1 48 

Scaled 

Conjugate 

Gradient 

0.046 (CE) 

2 24, 12 
Bayesian 

Regularization 
0.026 (MSE) 

2 12,12 
Levenberg-

Marquardt 
0.027 (MSE) 

2 12,12 

Gradient 

Descent with 

Momentum 

0.09 (CE) 

2 12,6 

Scaled 

Conjugate 

Gradient 

0.045 (CE) 

 

This low MSE highlights the model’s ability to minimize 

prediction errors, making it a robust tool for solving 

complex classification tasks. 

 

Fig. 2 Mean Squared Error (MSE) 

The model achieved an overall classification success rate 

of 95.8% across all stages—training, validation, and 

testing—as depicted in the Confusion Matrix. This 

performance metric provides a comprehensive overview of 

both correct and incorrect classifications at each stage of 

the neural network's development. The green squares along 

the diagonal of the matrix represent the correct 

classifications, while the red squares indicate the 

misclassifications, highlighting areas for potential 

improvement (Figure 3). The Confusion Matrix thus serves 

as a valuable tool for visualizing the accuracy of the model 
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and identifying specific areas where the network may need 

further refinement or adjustment. 

 

 

Fig. 3 Criteria – Confusion Matrix 

The Receiver Operating Characteristic (ROC) performance 

indicator indicates a true positive and false positive ratio 

(Figure 4). The true positive ratio for a given class i is the 

quotient of the number of outputs whose actual and 

predicted value is class i and the number of outputs whose 

predicted value is class i. The false positive ratio is the 

quotient of the number of outputs whose actual class is not 

class i and the predicted value is class i, and the number of 

outputs whose predicted value is not class i. 

 

Fig. 4 Criteria – Receiver Operating Characteristic (ROC) 

4.  CONCLUSIONS 

This research highlights advancements in predictive 

maintenance strategies for CNC machining centers by 

developing artificial neural network (ANN) models for 

vibration classification during step drilling. Using 

vibration data from CNC spindle housing, we classified 

vibrations as safe or harmful, improving maintenance 

practices. The results show several ANN architectures with 

strong potential in predicting vibrations during machining. 

Specifically, an architecture using the Levenberg-

Marquardt algorithm with two hidden layers of 12 neurons 

achieved a Mean Squared Error (MSE) of 0.027 and a 

classification success rate of 95.8%. These findings 

demonstrate machine learning’s potential in predicting 

equipment health and preventing costly downtimes. 

Additionally, integrating IoT and data mining within 

Industry 4.0 supports better decision-making and proactive 

maintenance. The outcomes advance smart manufacturing, 

stressing data-driven approaches to enhance efficiency, 

reliability, and sustainability. Future work should include 

larger datasets and compare different machine learning 

techniques, such as Support Vector Machines (SVM) and 

K-nearest neighbor (KNN) algorithms, for predictive 

maintenance and vibration classification. 
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