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Abstract: The paper presents results of experimental study of model single tooth and integral multi tooth milling 
cutter. During the study research were tool wear on rake face and flank face of face milling cutter during processing 
time. Radial and axial throw of tooth were small and wear parameters are during processing time remain near for 
both cases. Tool wear of model single tooth and eight teeth face milling cutter were modeled by statistical method 
and artificial intelligence neural network model and were compared. Better models were achieved with artificial 
intelligence method. 
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Modelovanje habanja alata modelskog i integralnog čeonog glodala primenom veštačke inteligencije. Rad 
prikazuje rezultate eksperimentalnih ispitivanja modelske glave za glodanje sa jednim zubom i integralne glave za 
glodanje sa osam zuba. Tokom procesa ispitivanja mereno je habanje zuba na grudnoj i leđnoj površini tokom 
vremena obrade. Pošto je radijalno i aksijalno bacanje zuba glave za glodanje bilo malo, i habanje za oba 
ispitivana slučaja slučaja bilo vrlo slično. Zatim je habanje modelskog jednozubog i glodala sa osam zuba 
modelirano statističkim metodama i pomoću veštačke neuronske mreže. Bolje slaganje merenih i računskih 
vrednosti je postignuto pomoću metoda veštačke inteligencije. 
Ključne reči: Parametri habanja, čeono glodanje, modeliranje, neuronske mreže. 
 
1. INTRODUCTION 
 
 Face milling is very efficient machining process, 
because the metal removal rate is higher in comparison 
with single point tool. Because of higher amount of 
material waste, most of tool life tests are in face milling 
are done with a single tool and the results are used for 
multi-tooth tool life prediction. The total tool life of 
multi-tooth cutter is multiplying the values of single 
tooth cutter by number of teeth is obtained. The 
phenomenon of tool life reduction in case of multi-toot 
cutter in comparison with single toot cutter during 
machining with constant cutting regime was observed 
in the paper.  
 There are usually two types of run-out recognized, 
it is radial and axial throw. Both types of throw yield 
influence on the cutting parameters [1]. The axial throw 
directly influences of surface roughness parameters. 
Both types of throw causes variation in chip cross 
section it is high cutting forces. The heavier chip cross 
section results in increasing cutting temperature and 
cutting force on discussed insert.  
 The paper [2] describes the implementation of a 
cutting force prediction model for milling that 
introduces radial engagement reduction caused by tool 
runout and workpiece flexibility, although tool wear is 
not considered. 
 Modeling of the output responses: surface 
roughness, cutting force, cutting power, specific cutting 
force and metal removal rate during the face milling 
with software ANOVA was used for evaluating the 
influence of the cutting regime parameters, namely: 
cutting speed, feed per tooth and depth of cut on the 

output machining process responses in [3] . 
Besides well-established AI techniques, ensemble 
methods in [4] simultaneously use several AI models, 
where all the predictions are combined. The high 
accuracy of ensemble predictions has been 
demonstrated in many milling processes. 
 Paper [5] proposes a method for cutting parameters 
identification using the multi-inputs-multi-outputs 
fuzzy inference system. The fuzzy inference system 
was used to identify the initial values for cutting 
parameters (cutting speed, feed rate and depth of cut) 
and flank wear using cutting temperature and tool life 
as outputs. 
 Whenever the tool wear reaches a point where the 
design surface roughness cannot be attained or the tool 
wear approaches maximum values, forced cutting tool 
replacement is necessary. In this case, the direct 
method of controlling tool wear is used. When the tool 
wear approaches maximum values, forced cutting tool 
replacement is necessary. In this case, the direct 
method of controlling tool wear is used [6].  
 A combination of signal processing techniques to 
obtain improved and robust estimates of tool wear used 
[7]. In paper [8] demonstrated was the use of a 
probabilistic neural network in monitoring tool wear in 
the end-milling operation via acoustic emission and 
cutting power signals.  
 The use of artificial intelligence methods is 
suggested in paper [9] for real-time prediction of 
surface roughness deviations, depending on the main 
drive power, and tool wear parameter, VB into account.  
 A series of artificial intelligence methods are tested: 
random forest, standard Multi-layer perceptron’s, 
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Regression Trees, and radial-based functions. Random 
forest was shown to have the highest model accuracy, 
followed by regression trees, displaying higher 
accuracy than the standard MLP and the radial-basis 
function [9]. 
 The wear outputs from the ANN model are then 
tested in [9]. It was observed that as the model using 
ANN provided quite satisfactory results, and that it can 
be used for online tool wear estimation. 
 The aim of this study was to prove that the tool 
wear on the same tooth, when machining is done with 
single tooth or multi-tooth cutter has approximately 
same values. The experimental results were modeled by 
ANN and compared to measured. 
 
2. MATERIAL AND METHOD 
 
 The investigation was done with constant cutting 
regime. At first with single tooth cutter, then with 
multi-tooth cutter and parameters of tool wear on rake 
and flank face were measured. To avoid influence on 
the results radial and axial throw of during study kept 
constant in limit ±0.002 mm. 
 The experiment has been carried out on correction 
steel C60 (Č1730) in normalized conditions. 
The eight-teeth face milling cuter with hard metal 
inserts SPAN 12 03 ER, P25 quality were used as 
processing tool. The geometrical elements of face 
milling tool cutting part did not vary and were: tool 
normal rake 7° tool normal crealance18° and tool 
cutting edge angle 75°. 
 The experiments have been carried out on vertical 
milling machine, with driving power of 14 kW. Cutting 
regime were: cutting speed v (m/s), feed f (mm/teeth) 
and depth of cut (axial) a (mm). All machining tests 
were carried out without application cooling and 
lubrication agent. Cutting speed v=2.95 m/s depth of 
cut a=1.5 mm, two values of feed per tooth f= 0.223 
and 0.142 mm/tooth. 

The measurement of wear on face surface and flank 
one of milling tool performed periodically on universal 
tool microscope Fig. 1. Photos of wear on rake and 
flank tool surface for different feeds per tooth was done 
on Scanning electron microscope. 

 

 
Fig. 1. Universal tool microscope 
 
3. NEURAL NETWORK 
 
 The basic architecture of a Neural Network typically 
consists of an input function, which can take the form 

of binary, continuous or normalized data: a processing 
architecture which consist of transfer function 
description, summation function, and relative learning 
strategy: a method for identifying and learning from 
past errors in estimates: and finally a mechanism for 
feeding error corrections back into the network [10]. 
A multilayer feed-forward network has been used, and 
the backpropagation training algorithm has been 
employed to train the network. Backpropagation is a 
systematic method for training multilayer ANN. A 
backpropagation network is a multilayer  feed-forward 
network which uses gradient-descent method to 
minimize the total squared error of the output computed 
by the net. The training algorithm of back-propagation 
involves four stages which are initialization of weights, 
feed-forward, backpropagation of errors, and updating 
the weights and biases [11]. 
 Modeling of the tool wear with feed forward neural 
network is composed of two stages: training and testing 
of the network with experimental machining data [12, 
13]. The scale of the input and output data is an 
important matter to consider, especially when the 
operating ranges of process parameters are different. 
The scaling or normalization ensures that the ANN will 
be trained effectively without any particular variable 
skewing the results significantly. As a result, all the 
input parameters are equally important in the training 
of network. 
 The architecture of the designed network comprises 
one input neuron corresponding to one input parameter, 
an output layer with one neuron corresponding to one 
output parameter at a time, and a single hidden layer of 
neurons. The transfer functions which have been used 
are tansig and purelin in hidden and output layers, 
respectively. The transfer function tansig is a 
hyperbolic tangent sigmoid transfer function, and 
purelin is a linear transfer function. With the help of 
back propagation training data set (Input parameter 
related to output parameters) is set to utilize to train the 
neural network. One input parameter and one output 
parameter are considered. The selected input 
parameters should be easily variable and can be easily 
changed by the operator.  
 • Selected input parameter is: processing time (min) 

• Selected output parameter is: width of flank wear 
land (mm), figure 2. 
 

 
Fig. 2. Network input and output layer 
 
 It must be highlighted that the best network 
architecture is reached by trial and error after 
considering different combinations of the number of 
neurons in the hidden layer, the number of hidden 
layers, spread parameter, and learning rate, depending 
on the type of neural network being used. 
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4. RESULTS AND ANALYSIS 
 
 Figure 3 and 4 shows SEM micrographs of wear on 
rake and flank tool surface for different feeds per tooth. 
 

   
Fig. 3. SEM micrograph of tool wear for f=0.223 

mm/tooth 
 

   
Fig. 4. SEM micrograph of tool wear for f=0.142 

mm/tooth 
 

 In Table 1 and 2 are presented experimental and 
modeled values of VBg - width of main flank wear land 
when processing with eight teeth and single tooth for 
different values of feed per tooth. These values also 
represent data for training the neural network. 
 

8 teeth wear 
VBg  [mm] 

1 tooth wear  
VBg  [mm] 

Processing 
time [min] 

Exp. Model Exp. Model  
0 0 0 0 0 
1 0.06 0.0600 0.06 0.0600 
3 0.08 0.0800 0.09 0.0898 
5 0.12 0.1200 0.11 0.1106 
8 0.14 0.1400 0.14 0.1395 
10 0.16 0.1600 0.16 0.1603 
12 0.17 0.1700 0.18 0.1797 
15 0.19 0.1900 0.20 0.2002 
18 0.20 0.2000 0.22 0.2200 
20 0.23 0.2300 0.23 0.2295 
23 0.25 0.2500 0.24 0.2408 
25 0.26 0.2600 0.25 0.2494 
28 0.27 0.2700 0.26 0.2614 
30 0.28 0.2800 0.27 0.2693 
32 0.29 0.2900 0.28 0.2808 
34 0.30 0.3000 0.30 0.2997 
37 0.32 0.3200 0.34 0.3401 

Table 1. Width of flank wear for cutting speed v=2.95 
m/s, depth of cut a=1.5 mm and feed per tooth 
f= 0.223 mm/tooth 

 
 For case 8 teeth and 1 tooth face milling cuter 
parameters of tool wear: width of flank wear land VBg, 

versus processing time and for cutting regime: cutting 
speed v=2.95 m/s depth of cut a=1.5 mm and feed per 
tooth f= 0.223 mm/tooth are on Fig 5 and for regime 
cutting speed v=2.95 m/s depth of cut a=1.5 mm and of 
feed per tooth f=0.142 mm/tooth is on Fig 6. 
 

8 teeth VBg wear 
[mm] 

1 tooth VBg 
wear [mm] 

Processing 
time [min] 

Exp. Model Exp. Model 
0 0 0 0 0 
1 0.07 0.0698 0.07 0.0700 
3 0.08 0.0815 0.10 0.1000 
4 0.09 0.0898 0.11 0.1101 
6 0.10 0.1010 0.13 0.1298 
9 0.12 0.1196 0.14 0.1409 
11 0.13 0.1301 0.15 0.1483 
13 0.14 0.1400 0.16 0.1616 
15 0.16 0.1600 0.18 0.1793 
18 0.17 0.1700 0.20 0.2001 
20 0.18 0.1800 0.23 0.2300 
23 0.20 0.2000 0.25 0.2500 
26 0.22 0.2200 0.27 0.2700 
28 0.28 0.2800 0.28 0.2800 
29 0.33 0.3300 0.32 0.3200 
30 0.35 0.3500 0.36 0.3600 

Table 2. Width of flank wear for cutting speed v=2.95 
m/s depth of cut a=1.5 mm and feed per tooth 
f=0.142 mm/tooth 

 

 
Fig. 5. Width of flank wear for cutting speed v=2.95 

m/s, depth of cut a=1.5 mm and feed per tooth 
f= 0.223 mm/tooth 

 

 
Fig. 6. Width of flank wear for cutting speed v=2.95 

m/s depth of cut a=1.5 mm and feed per tooth 
f=0.142 mm/tooth 

 
The regression plot of the ANN for flank wear is 
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shown in figure 7. The regression plots display the 
network outputs with respect to targets for training. 
From this plot, the value of the regression coefficient is 
found to be more than 99.9% which strongly justifies 
the acceptability in the prediction capability of the 
models. In case of the dry ANN model, the regression 
coefficient has a higher value; hence, it can be 

concluded that this model is accurate. From figure 7 
can be seen that there is not significant difference 
between of wear parameters when machining with 
single tooth and with eight teeth. From graph of tool 
wear parameters can be concluded that tool life of 
single tooth and multi-tooth cutter is same if run-out of 
milling cutter tooth is very small, less than ±0.002 mm. 

 
Fig. 7. Width of flank wear for cutting speed v=2.95 m/s depth of cut a=1.5 mm and feed per tooth f=0.142      

mm/tooth 
 

The learning function can be applied to individual 
weights and biases within the network. The 
LEARNGDM learning algorithms in feed-forward 
networks are used to adapt networks. Gradient descent 
method (GDM) was used to minimize the mean 
squared error between the network output and the 
actual error rate. It trains the network with gradient 
descent with the momentum back-propagation method. 
The back-propagation learning in feed-forward 
networks belongs to the real of supervised learning, in 
which the pairs of input and output values are fed into 
the network for many cycles, so that the network 
'learns' the relationship between the input and the 
output. 

For this study, feed-forward network was selected 
since this architecture interactively creates one neuron 
at a time. This is an optimization procedure based on 
the gradient descent rule which adjusts the weights of 
the network to reduce the system error is hierarchical. 
The network always consists of at least three layers of 
neurons: the input, output, and middle hidden layer 
neurons. The input layer has inputs, which is 
processing time. The output is the values of flank wear 
land. Three parameters were set to optimize the 
network performance: the number of hidden layers is 
10, the number of iterations is 100 and the number of 
neurons in the hidden layer is 10. 
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The results obtained by the feed-forward network, 
using TRAINLM algorithms for training and 
LEARNGDM algorithms for learning, show agreement 
with the experimental data. This shows that the selected 
parameters to optimize the network performance were a 
good choice.  

Research showed that NN model gives accurate, 
precise prediction on flank wear land. Figure 8 shows 
the response simulation graph of the flank wear land in 
terms of the processing time for various feed.   

 
 

 

 
Fig. 8. Width of flank wear for cutting speed v=2.95 m/s depth of cut a=1.5 mm and feed per tooth f=0.142 

mm/tooth 
 
5. CONCLUSION 
 
 In this paper a neural network system for the 
prediction of the flank wear land has been introduced. 
The ANN model was developed based on the milling of 
correction steel C60. Observations indicate that the 
ANN modeling results of turning were in good 
agreement with the experimental findings, 
demonstrating that approximately 99% of the 
predictions were achieved. Experimental results 
showed that, The tool wear parameters of single tooth 
and multi-tooth cuter is similar if radial and axial throw 
of tooth is very small, less than ±0.002 mm. The 
comparison of ANN results with the experiment 
findings verified the high accuracy of the models. The 
neural network modeling technique could be an 
economical and successful method for the prediction of 
Tool wear parameters versus processing time as well as 
polinomial function. 
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