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Introduction

Per-pixel displacement mapping (Patterson, Hoggar & 
Logie, 1991) is a technique based on texture mapping 
(Catmull, 1974; Blinn & Newell, 1976). It is inspired at the 
same time by bump mapping (Blinn, 1978; Peercy, Airey & 
Cabral, 1997) that proceeds on pixels of the microreliefs 

texture, and the displacement mapping (Cook, 1984) that 
proceeds on the vertex of the 3D mesh. Texture mapping 
associates a two-dimensional image with a three-dimen-
sional surface using a function called parameterization. 
This function maps each vertex (x, y, z) of the mesh sur-
face, with a pair of coordinates (s, t) representing a pixel 
of the texture (Figure 1).
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ABSTRACT

Per-pixel displacement mapping is a texture mapping technique that adds 
the microrelief effect to 3D surfaces without increasing the density of their 
corresponding meshes. This technique relies on ray tracing algorithms to find 
the intersection point between the viewing ray and the microrelief stored in 
a 2D texture called a depth map. This intersection makes it possible to deter-
mine the corresponding pixel to produce an illusion of surface displacement 
instead of a real one. Cone tracing is one of the per-pixel displacement map-
ping techniques for real-time rendering that relies on the encoding of the 
empty space around each pixel of the depth map. During the preprocessing 
stage, this space is encoded in the form of top-opened cones and then stored 
in a 2D texture, and during the rendering stage, it is used to converge more 
quickly to the intersection point. Cone tracing technique produces satisfacto-
ry results in the case of flat surfaces, but when it comes to curved surfaces, 
it does not support the silhouette at the edges of the 3D mesh, that is to say, 
the relief merges with the surface of the object, and in this case, it will not be 
rendered correctly. To overcome this limitation, we have presented two new 
cone tracing algorithms that allow taking into consideration the curvature 
of the 3D surface to determine the fragments belonging to the silhouette. 
These two algorithms are based on a quadratic approximation of the object 
geometry at each vertex of the 3D mesh. The main objective of this paper is 
to achieve a texture mapping with a realistic appearance and at a low cost 
so that the rendered objects will have real and complex details that are vis-
ible on their entire surface and without modifying their geometry. Based on 
the ray-tracing algorithm, our contribution can be useful for current graphics 
card generation, since the programmable units and the frameworks associat-
ed with the new graphics cards integrate today the technology of ray tracing.
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 » Figure 1: Parameterization σ(u,v) and inverse param-
etrization σ-1(x,y,z) matching a surface S of R3 with the 
domain M of R2

Texture mapping does not produce any microrelief ef-
fects and the colors of the pixels representing the object 
in the scene always remain the same regardless of the 
lighting conditions (Figure 2a). To solve this problem, 
Blinn introduced bump mapping (Blinn, 1978) based on 
the disturbance of the surface normals in the function 
of a depth map (Figure 3b). The disruption of normals 
produces an illusion of small displacements and pro-
duces a microrelief effect (Figure 2b). The displacement 
mapping uses the depth map in another way. It consists 
of displacing the vertices of the surface according to the 
values stored in the depth map. For this, the mesh must 
be subdivided so that it adapts to the texture resolution 
(depth map), which generates a lot of graphic primitives 
(vertices and polygons) to be processed (Figure 2c). The 
main goal of per-pixel displacement mapping is to have 
the same rendering as displacement mapping but with-
out increasing the density of the base mesh (Figure.2d). 
It consists of reducing the number of graphics primitives 
while retaining the overall visual quality of the scene.

Figure 2 shows the difference between texture mapping 
techniques. As shown in the figure, the mesh density is 
the same in images (a), (b), and (d) but per-pixel displace-
ment mapping allows rendering very detailed geometry. 
And compared to displacement mapping (c), per-pixel 
displacement mapping produces the same result but at a 
very low cost.

 » Figure 2: Comparison of the different texture mapping 
techniques (Halli et al., 2008). (a) Texture mapping. (b) 
Bump mapping. (c) Displacement mapping. (d) Per-pix-
el displacement mapping

Per-pixel displacement mapping is based on three main 
elements: the displacement map, the tangent space,  
and the ray-tracing algorithm. The displacement map 
(Figure 3) is a two-dimensional image whose pixels are 
not used to store colors, but geometrical data (i.e. depths 
and normals). In the α channel, we store the depths as-
sociated with the microrelief mapped on the 3D surface. 
The other three channels: red, green, and blue, are used 
to store the three x, y, and z components of the normal, 
which are calculated from the depths. Since the z 
component of the normal can be retrieved as a function 
of the two others, the blue channel can be released to 
store other data used by certain techniques such as cone 
tracing. In this case, the displacement map can be named 
according to this technique (i.e. the Cones Map as shown 
in Figure 3d).

 » Figure 3: (a) The corresponding texture. (b) The depth 
map. (c) The components x, y, and z of the normal. (d) 
A cones map that stores the depths in the α channel, 
the x and y components of the normal are stored in the 
red and green channels, and the blue channel stores 
the cones’ radius

As shown in figure 4, the tangent space is a local space 
associated with each vertex constituting the 3D mesh 
(Peercy, Airey & Cabral, 1997). It is calculated using the 
normal to the vertex and the associated texture coordi-
nates. The viewing ray vector and the light vector must 
be expressed in this space. 

     

 » Figure 4: Tangent space. It is a local space constituted 
by three vectors: the normal, binormal, and tangent 
associated with each vertex of the 3D mesh

Ray tracing is an algorithm that searches the intersec-
tion of the viewing ray and the microrelief stored in the 
displacement map (Figure 5 and Figure 6). This search is 
performed in texture space for each pixel resulting from 
the 3D mesh. The main problem of per-pixel displace-
ment mapping is to find the first intersection point. 
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As shown in figures 5 and 6, the first intersection is rep-
resented by the point P along the viewing ray V. So, to 
have an illusion of relief displacement, the fragment (s, 
t) will be textured using the texel (x, y) instead of (s, t).

 » Figure 5: Ray tracing in the depth map (Halli et al., 
2008). (a) 3D view of the ray tracing. (b) The relief’s 
slice including the viewing ray. (c) The depth map. (d) 
The corresponding texture. (s,t) is the starting point. 
The main problem of per-pixel displacement mapping is 
to find the first intersection (x,y) of the viewing ray and 
the microrelief. So, the fragment (s,t) will be textured 
using the texel (x,y) instead of (s,t)

 » Figure 6: Ray tracing in the depth map. The first inter-
section point between the viewing ray and the microre-
lief is the P(x, y, z)

 » Figure 7: Search for the intersection with iterations 
(Linear search). The number of iterations and the size 
of the displacement step must be defined in advance. 
The ti parameter represents the sum of the step size  
at iteration i

As shown in figures 5 and 6, the point P can be expressed 
as follows:

              (1)

The speed constraint does not allow an exact search, 
which makes it necessary to find a point as close as pos-
sible to the intersection point. The different approaches 
to performing this search are presented in (Szirmay-Kalos 
& Umenhoffer, 2008). To better locate the first intersec-
tion, the number of iterations is predefined in advance. 
The size of the displacement step is defined according to 
the technique used, which can be constant (Figure 7) or 
variable (Figure 8). During the search for the intersection, 
we use the following general formulas:

             (2)

             (3)

 » Figure 8: Search for the intersection with iterations and 
with an encoding of the empty space (Sphere tracing). 
The number of iterations must be defined in advance 
and the size of the displacement step is calculated as 
a function of the sphere parameters encoded in a pre-
processing stage. The ti parameter represents the sum 
of the step size at iteration i.



Where v is the normalized viewing ray vector expressed 
in the texture space having a normalized depth (i.e. v/vz) 
involving vz=1.

These two formulas are used together to determine the 
point Pi+1. At iteration i+1, the parameter ti+1 makes it 
possible to determine the position of the point P along 
with vector v, and the step parameter makes it possible 
to determine its displacement, the value of which is 
calculated according to the used technique.

We note that the viewing ray is reversed during the 
search for the intersection. It means that we start from 
the eye (camera) towards the microrelief.

Contribution

Per-pixel displacement mapping suffers from three 
main problems, namely, the time to compute the dis-
placement map, the search of the intersection between 
the viewing ray and the microrelief stored in the dis-
placement map, and the treatment of the silhouette.

The preprocessing is the phase in which we calculate 
a displacement map for each texture. The computing 
speed depends on the used algorithm. An improvement 
has been proposed in (Halli et al., 2008) which consists 
of using linear algorithms instead of quadratic ones and 
which has considerably increased the computing speed.

To find the intersection point, we use ray-tracing algo-
rithms. The best technique in this sense is cone tracing 
(Figure 9). 

 » Figure 9: Cone tracing on the displacement map. At 
each iteration, the next position Pi+1 of the viewing ray v 
is calculated as a function of the current position Pi  
and the cone parameters which are the height D[Pi ] 
and its radius.

This technique relies on the encoding of the empty space 
to converge more quickly. This space is stored in a texture 

called a cones map (Figure 3d). Improvements concern-
ing the search of the intersection (ray-tracing algorithm) 
have been proposed in (Halli et al., 2008; Ouazzani 
Chahdi et al., 2017; Ouazzani Chahdi et al., 2018).

Despite the improvements proposed in (Halli et al., 
2008;  Ouazzani Chahdi et al., 2017; Ouazzani Chahdi et 
al., 2018), the silhouette problem persists. The silhou-
ette is visible at the edges of the 3D object (Figure 10, 
Figure 11). To explain this problem, we have Figure 10 
which shows a flat and curved surface. for flat surfaces, 
the viewing ray always pierces the reliefs (Ray A), that 
is to say, there we will always have an intersection. But 
for curved surfaces, sometimes the viewing ray does 
not pierce the relief (Ray B), that is to say, there is no 
intersection. Then, the ray tracing algorithm will not 
find an intersection point or it will find an erroneous 
one, and in this case, the pixel must be discarded to 
be able to have a correct treatment of the silhouette.

 » Figure 10: Highlighting the silhouette problem. (top) 
a flat surface always allows us to have an intersection 
with the relief. (bottom) with a curved surface, the 
viewing ray can leave the surface without piercing the 
relief. The pixel (s,t) in this case belongs to the silhou-
ette

The main contribution proposed in this paper compared 
to the improvements proposed in (Halli et al., 2008; 
Ouazzani Chahdi et al., 2017; Ragragui et al., 2017; Ouaz-
zani Chahdi et al., 2018; Ragragui et al., 2018a; Ragragui, 
et al., 2018b; Ragragui et al., 2020) is the resolution of 
the silhouette problem. 

Indeed, as shown in Figure 11b, the cone tracing tech-
nique does not support the treatment of the silhouette. 
Based on this observation, this paper presents two new 
cone-tracing algorithms based on a quadratic approx-
imation at each vertex of the 3D mesh (Jean, 2002; 
Oliveira & Policarpo, 2005). The first algorithm consists 
of rectifying the viewing ray after each new displacement 
(after the cone tracing), and the second one consists 
of rectifying the cone before each new displacement 
(before the cone tracing).

42



Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 43

Figure 11 shows a comparison of a cylinder rendered 
with the cone tracing technique without and with cor-
rection of the silhouette and by highlighting the polyg-
onal mesh. We notice that the silhouette is not visible 
on the 3D object when rendered without the correct 
silhouette (Figure 11b); this problem is surmounted by 
exploiting the parameters of the quadratic surface to 
take into account the curvature of the 3D object. Figure 
11c and Figure 11d show the same 3D model rendered 
by our approach that provides a correct rendering.

 » Figure 11: Rendering of a cylinder with cone tracing 
techniques. (a) Basic mesh using 56 triangles. (b) 
Without the correct silhouette (original technique). (c), 
(d) With correct silhouette (proposed technique). We 
notice in (b) that the surface of the cylinder and the 
reliefs are confused. This problem has been solved by 
our approach in (c, d)

Contrary to the displacement mapping, the silhouette 
is generated without needing to change its geome-
try and by using a minimal number of triangles (Fig-
ure 11a). Figure 12 shows an example of a scene that 
can be realized by the contribution of this paper. 

 » Figure 12: Rendering of a scene by the relaxed cone 
mapping with the correct silhouette

The main advantage of our contribution is that it can be 
integrated into the new graphic card units. Indeed, the 
programmable pipeline model for ray tracing has been 
introduced in (Parker et al., 2013). Currently, the frame-
works and the programmable units associated with the 
new graphics cards integrate a programmable GPU-accel-
erated ray-tracing that provides a simple, recursive, and 
flexible pipeline for accelerating ray-tracing algorithms.

Related Works

The displacement mapping was introduced in (Cook, 
1984). It consists of displacing each vertex of the 3D mesh 
according to the normal with a value given by the height 
map. To have better rendering quality, the basic mesh 
must be subdivided into sub-polygons to be adapted to 
the height map resolution, which leads to a very high 
number of primitives processed by the graphic cards.

Contrary to the displacement mapping, which changes 
the geometry (Cook, 1984), the bump mapping occurs 
only at the level of the shading (Blinn, 1978; Peercy, Airey 
& Cabral, 1997). The latter being a function of the nor-
mals, the disruption of this one will cause a microrelief 
illusion. So instead of creating the displacement surface, 
just calculate its normal and use it in a shading formula 
to simulate the surface details. When it comes to min-
iature reliefs, this technique produces a satisfactory 
rendering, but it is limited for shading and self-occlusion. 
For a large elevation of reliefs, the per-pixel displacement 
mapping has been proposed in (Patterson, Hoggar & 
Logie, 1991). For shading, the use of a horizon map has 
been introduced in (Max, 1988; Sloan & Cohen, 2000). 

To avoid the calculation of the normal during the ren-
dering stage, a normal mapping has been introduced in 
(Peercy, Airey & Cabral, 1997) that consists of storing the 
normals of the microrelief in a texture called: normal 
map. For real-time rendering, several implementations 
have been proposed in (Ernst et al., 1998; Kilgard, 2000; 
Sung Kim, Hyun Lee & Ho Park, 2001; Lee et al., 2007).

Parallax mapping is an extension of the bump mapping 
(Kaneko et al., 2001; Welsh, 2004; McGuire & McGuire, 
2005; Premecz, 2006). This technique performs an 
approximate search for the intersection between the 
viewing ray and the relief contained in the displacement 
map. This point is defined by the intersection of the 
viewing ray and the horizontal line, which passes through 
the height of the relief at the current point. The main 
advantage of this technique is the addition of the paral-
lax effect. However, it is limited to irregular microrelief. 
Improvements were introduced in (Brawley & Tatarchuk, 
2004; Tatarchuk, 2006) to manage the shading correctly.

Relief mapping introduced in (Policarpo, Oliveira & 
Comba, 2005; Policarpo & Oliveira, 2006) is based 



on relief texture mapping (Oliveira, 2000; Oliveira, 
Bishop & McAllister, 2000). This technique calcu-
lates the intersection point by two stages, in the 
first one, it determines the interval where the first 
intersection is located, and in the second one, the 
intersection point is refined using a binary search. 

The binary search does not take into account the depths 
of the microrelief. To overcome this problem, a linear 
search coupled with a secant one makes it possible 
to converge even more quickly by using the depths of 
the microrelief (Brawley & Tatarchuk, 2004; Yerex & 
Jagersand, 2004; Tatarchuk, 2006). An improvement 
of the relief mapping technique presented in (Ouazzani 
Chahdi et al., 2018) consists of choosing the number of 
iterations dynamically according to the relief’s depth.

To converge rapidly towards the first intersection point, 
Donnelly introduced the notion of coding a conserva-
tive space in the sphere tracing technique (Donnelly, 
2005). This is the first method that is based on the 
calculation of the empty space to converge quickly to 
the first intersection. This space is calculated during the 
preprocessing stage and during the rendering stage, 
a sphere tracing allows each iteration to approach 
significantly the first intersection with the relief. 

The cylinder tracing was introduced in (Baboud & 
Decoret, 2006a). The preprocessing stage of this tech-
nique defines for each pixel of the depth map, a radius 
of a cylinder inside which, no viewing ray can pierce the 
relief more than once. During the search for the intersec-
tion, this radius allows moving forward without the risk 
of skipping the first intersection. The second step is to 
perform a binary search between the last two positions.

The cone tracing technique introduced in (Paglieroni & 
Petersen, 1994; Dummer, 2006; Policarpo & Oliveira, 
2007) proposed to calculate the empty space as a form 
of top-opened cones using 2D texture. The technique 
has been proposed in two versions, the conservative 
technique (Paglieroni & Petersen, 1994; Dummer, 2006) 
and the relaxed one (Policarpo & Oliveira, 2007). Both 
versions were subsequently improved in (Halli et al., 
2008). These improvements consist firstly of using lin-
ear algorithms O(n) instead of quadratic ones O(n²) to 
compute the conservative and the relaxed cone. Sec-
ondly, calculating and storing the cones’ radius instead 
of the cones’ ratios thereby having cone angles to the 
order of π/2 rather than π/4, and finally extending the 
technique to support the non-square texture using ellip-
tical rectification of cones during the rendering stage. 

The third version of the cone has been proposed in 
(Ouazzani Chahdi et al., 2017), it consists of using a hybrid 
cone which is located between the conservative and the 
relaxed one so that the cone tracing pierces the relief 
only once and without the need for binary research.

Another way to calculate the empty space around 
a texel is to use a dilatation and an erosion map 
(Kolb & Rezk-Salama, 2005). These two maps are 
calculated from the depth map and allow having at 
each texel a secure region. The successive intersec-
tions of the viewing ray with these regions make it 
possible to converge to the intersection point.

Pyramidal displacement mapping introduced in (Oh, Ki & 
Lee, 2006; Tevs, Ihrke & Seidel, 2008) makes it possible 
to create a pyramidal structure of the depths by calculat-
ing in each time a map that is four times smaller than the 
previous one and taking the maximum of the depth of 
each group of four pixels. The intersection point between 
the viewing ray and the depths is obtained by the succes-
sive intersections with the horizontal lines representing 
the maximum depth of each level of the pyramid.

Per-pixel extrusion mapping consists of extruding the 
3D models according to a binary form stored in a 2D 
texture without perturbing the basic mesh (Halli et al., 
2009). The empty space is calculated by using the Euclid-
ean Distance Transform EDT described in (Danielsson, 
1980) and stored in a 2D texture called distance map, 
the normals of the extruded form are calculated from 
this later. The binary form, the distance map, and the 
normals are stored in a 2D texture called a shape map. 
Improvements were proposed to correct the intersec-
tion point between the viewing ray and the extruded 
form and to extend the extrusion algorithm for creating 
the outline extruded surfaces (Ragragui et al., 2017).

The algorithms of extrusion and revolution have been 
combined with a shape box to create extruded and 
revolved 3D objects without polygonal meshes (Halli et 
al., 2010). The two algorithms are based on the shape 
map. The extrusion consists of lifting the 2D binary form 
stored in the shape map, on the other hand, the revolu-
tion uses this one to create a revolved object around a 
revolution axis. For the texturing of revolved objects, we 
use one of the two projections, cylindrical or spherical. 
A rectification concerning these two types of projec-
tion has been proposed in (Ragragui, et al., 2018b).

3D objects created by extrusion or by revolution do not 
present any microrelief effect, that is to say, they are tex-
tured by the classic texture mapping technique. To solve 
this problem, two improvements have been proposed, 
one for extrusion (Ragragui et al., 2020) and the other for 
revolution (Ragragui et al., 2018a), which consists of mak-
ing a combination with the bump mapping technique.

To manage the silhouette, four approaches have 
been proposed. The silhouette of an object is vis-
ible on the edges of the associated 3D mesh. 

The first solution is to use a local representation of the 
3D surface at each vertex. Two local representations 
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have been proposed. The first consists of using a qua-
dratic approximation represented by two parameters 
(Jean, 2002; Oliveira & Policarpo, 2005). And the second 
consists of using a local space for each vertex (Chen & 
Chang, 2008; Na & Jung, 2008). The two representa-
tions are calculated and associated with each vertex 
during the preprocessing stage. During the rendering 
stage, the solution adopted makes it possible to deter-
mine the fragments belonging to the silhouette. 

Shell mapping proceeds to the extrusion of each trian-
gle of the mesh according to the normals of its three 
vertices (Hirche et al., 2004). The extrusion gives a 
prism constituted by eight triangles that will have to 
be included in the rendering stage. To avoid some 
discontinuity defects related to the bilinear interpola-
tion, the prism is subdivided into three tetrahedrons 
using an algorithm described in (Shirley & Tuchman, 
1990). The use of barycentric coordinates introduced in 
(Porumbescu et al., 2005) makes it possible to define a 
relation between each 3D point contained in the prism, 
and a single texel in the 3D displacement map. The 
use of semi-transparent 3D textures allows supporting 
some more advanced functionalities (Dufort, Leblanc 
& Poulin, 2005). A smoothing function coupled with 
the patches of coons makes it possible to eliminate 
strongly the distortions, and thus produces very satis-
factory results (Jeschke, Mantler & Wimmer, 2007).

View-dependent displacement mapping (Wang et al., 
2003; Wang et al., 2004) consists of calculating, for 
each viewing ray, the distance between each point of 
a polygon and the displacement surface. To be able to 
manage the silhouette, the curvature of the base surface 
must also be taken into consideration. A five-dimen-
sional is thus defined to store the texture coordinates, 
the spherical coordinates of the viewing ray, and the 
curvature index of the surface along the viewing ray. 
This function represents a large amount of data, for this 
reason, it is compressed and stored as a 3D texture.

Image-based modeling and rendering techniques 
(IBMR) allow creating entire 3D objects without polyg-
onal meshes based on per-pixel displacement mapping 
(Oliveira, Bishop & McAllister, 2000; Yerex & Jagersand, 
2004; Baboud & Décoret, 2006a; Baboud & Decoret, 
2006b; Policarpo & Oliveira, 2006; Ritsche, 2006; 
Toledo, Lévy & Levy, 2008; Toledo, Wang & Lévy, 2008; 
Halli et al., 2010; Ragragui et al., 2017; Ragragui et al., 
2018a; Ragragui, et al., 2018b; Ragragui et al., 2020). 
Despite the diversity of the objects that can be created 
using these techniques, the silhouette problem persists. 
Once this problem is resolved and seen that modern 
graphics cards integrate and implement ray tracing algo-
rithms, these techniques represent a better alternative 
to displacement mapping for creating 3D objects.

Cone tracing technique

In the pre-processing stage, the cone tracing technique 
calculates the empty space around each pixel of the 
depth map as a top-opened cone and stores its radius 
in a displacement map (Halli et al., 2008) (i.g. alpha 
channel). Then we use this space during the search for 
the intersection to converge quickly. This technique 
has been presented in two versions, the conservative 
technique and the relaxed one. In the first one, the 
cone is defined so that the cone tracing does not pierce 
the relief (Figure 13), and in the second one (Figure 
14), the cone is defined so that the cone tracing can-
not pierce the relief more than once, and then, the 
intersection point is refined using a binary search.

In both cases, the next ti+1 parameter is given by:

      (4)

The next point Pi+1 is computed with the formu-
la (3), where D[Pi] is the depth at point Pi, in this 
case, it represents the height of the cone.

 » Figure 13: Ray tracing in the cones map (cross-section). 
In each iteration, the following position Pi+1 of the view-
ing ray is calculated according to the current position Pi 
and the value of the ti+1 parameter

 » Figure 14: The binary search phase with the relaxed 
cone tracing. It is made between the last position Pi+1 
and the starting position P0 of the viewing ray



The third version of the cone has been proposed in 
(Ouazzani Chahdi et al., 2017), which is about the hybrid 
cone (Figure 15). The principle of this contribution is 
to use a cone that is located between the conserva-
tive cone and the relaxed one so that the cone tracing 
pierces the relief only once and without the need for 
binary research. This contribution further improves 
rendering quality and increases rendering speed.

 » Figure 15: The hybrid cone is located between the  
conservative and the relaxed one (Ouazzani Chahdi  
et al., 2017)

Cone tracing (in its three versions) remains effective 
for real-time rendering on flat surfaces, but when it is 
about of the curved surfaces, the silhouette is not vis-
ible at the edges of the rendered objects (Figure 16).

 » Figure 16: Rendering of a cylinder with the original 
cone-tracing techniques. The silhouette is not visible at 
the edges of the 3D objects. That is to say, the reliefs 
elevations coincide with the surface of the cylinder

To solve this problem, we propose to use the qua-
dratic approximation approach to exploit its param-
eters in the cone-tracing phase to determine the 
silhouette fragment. The proposed contribution 
is based on the originals cone tracing techniques 
(Halli et al., 2008) and the quadratic approximation 
approach (Jean, 2002; Oliveira & Policarpo, 2005).

Quadratic approximation

The quadratic approximation was used with the relief 
mapping technique in (Oliveira & Policarpo, 2005), it 
consists of calculating an approximate quadratic surface 
for each vertex of the 3D mesh during a preprocess-
ing stage, and in the rendering stage, this surface is 
used to adapt the ray-tracing process so that it takes 
into consideration the form of the mesh geometry.

The approximate quadratic surface is represented by  
two parameters a and b so that:

            (5)

where (x, y, z) are the coordinates of the  
processed vertex.

These parameters are calculated by using the quadrics 
(Jean, 2002): let E be the set of the triangles shar-
ing a vertex mk(xk, yk, zk), and let M = {m1, m2, …, mn} 
the set of the vertices in E. All the vertices in M are 
expressed in the tangent space associated with mk. 
Given M ' = {m1', m2', …, mn'}, where mi' = (xi', yi', zi') 
= (xi – xk, yi – yk, zi – zk), the coefficients a and b are 
obtained by solving the following system Ax = b:

        

(6)

During the rendering stage, coefficients a and b will be 
interpolated for each pixel and then used to calculate 
the distance between the viewing ray and the quadrat-
ic surface. We have two cases as shown in Figure 17.

 » Figure 17: Cross-section of two quadratic surfaces. On 
the left surface (a), the viewing ray is inside the quad-
ric, and on the right surface (b), the viewing ray is out-
side. In both cases, the distance between the viewing 
ray and the quadric Q is given by the PR segment

V is the viewing ray and lets R be a point belonging to  
the quadric Q, U is the unit vector perpendicular to V  
at the point P.
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In the first case (V inside the quadric, see Figure 17a); R is 
obtained by translating P by d units along the vector U:

            (7)

The distance between the point P and the quadric is 
simply d, which can be obtained by substituting the 
coordinates of R in the equation of the quadric:

    
(8)

The solution of this equation gives:

      (9)

With ∆ > 0 and
 

In the second case (V outside the quadric, see Figure 
17b), where Δ < 0, the viewing ray is outside the quadric, 
in this case, the distance d is:

            (10)

We denote by q the quadric (aPx² + bPy² ) asso-
ciated with the parameters a and b.

The texture space is planar, and in the rendering stage, 
the approximate surface calculated at each vertex of 
the 3D mesh during the preprocessing stage is used 
so that this space can be adapted to the 3D object 
geometry. In reality, the texture space remains always 
planar, and during the search for the intersection, 
the viewing ray is rectified to correct the position of 
the point Pi+1 using the characteristics of the approx-
imate surface. We denote by v and u respectively 
the vector V and U expressed in the texture space.

In the first case (Figure 17a), the next point Pi+1 is  
corrected by:

 (11)

Moreover, in the second case (Figure 17b), the next point 
Pi+1 is corrected by:

 (12)

Since the depth of v is normalized (v/vz), so, in the 
first case, the distance d must be divided by vz, and 
in the second case, the quadric q must be divided 
by vz², and this before normalizing the depth of v.

Figure 18 and Figure 19 show the general appearance of 
the viewing ray during the search for the intersection. 

 » Figure 18: The viewing ray is inside the quadric. At each 
iteration, we approach the quadratic surface

 » Figure 19: The viewing ray is outside the quadric.  
At each iteration, we move away from the  
quadratic surface

During the linear search, the relief mapping tech-
nique (Policarpo, Oliveira & Comba, 2005) chooses 
the t parameter in the interval [0, 1]. This search is 
optimized in (Oliveira & Policarpo, 2005) by choos-
ing this one in the interval [0, tmax], with tmax is the 
smallest t > 0 such that the distance from the view-
ing ray to the quadric is equal to 0 or 1 (Figure 20). 

 » Figure 20: A ray that hits depth 1 (d = 1) in the texture 
space has reached the bottom of the depth field char-
acterizing an intersection (the blue ray). On the other 
hand, a ray that returns to the depth 0 (d = 0) can  
be safely discarded as belonging to the silhouette  
(the red ray)



To find the most accurate value, tmax must be cal-
culated by substituting (Px, Py, Pz) by (Vxt, Vyt, Vzt) 
and setting d=0 and d=1 respectively in both equa-
tions (8) and (10), then solve for t. Algorithms 1 and 
2 implement this optimization in both cases.

Algorithm 1: tMax1

Input: V, U, (a,b) | Output: tmax

Begin

 A ← a*V.x*V.x + a*V.y*V.y

 B ← 2*a*V.x*U.x + 2*b*V.y*U.y – V.z

 C ← a*U.x*U.x + b*U.y*U.y – U.z

 D ← B*B – 4*A*C

 If D > 0 Then

  tmax ← (B – Sqrt(D)/-2*A)

 EndIf

 D ← V.z/A      

 If D > 0 Then

  tmax ← Min(tmax,D)

 EndIf

 tmax ← Abs(tmax)

End

Algorithm 2: tMax2

Input: V, q | Output: tmax

Begin

 D ← V.z*V.z – 4*q 

 If D > 0 Then 

  tmax ← (-V.z + Sqrt(D))/(-2*q))

EndIf

 D ← V.z/q      

 If D > 0 Then

  tmax ← Min(tmax,D)

 EndIf

 tmax ← Abs(tmax)

End

During the search for the intersection, the parameter ti+1 
is calculated by:

               (13)

At the end of the linear search, we check whether 
the value of the t parameter is greater than tmax, if 
this is the case, the pixel must be discarded, else the 
intersection point is refined with a binary search.

The combination of relief mapping with quadrat-
ic approximation produces satisfactory results, 
but when the depth scale is large enough or 
when the viewing ray shaves the surface, defects 
become visible as shown in Figure 21.

 » Figure 21: The defects are visible in the parts where the 
viewing ray shaves the surface

Cone tracing with 
correct silhouette

As mentioned above, the original cone tracing technique 
produces satisfactory results when it is about flat surfac-
es (Halli et al., 2008), but for the curved surfaces, the 
silhouette didn’t render correctly at the edges of the 3D 
object. To correct the silhouette problem, we will use 
the parameters of the quadratic surface to adapt the 
cone tracing process so that it takes into account the 
characteristics of the 3D surface. For this, we opted two 
solutions. The first one uses a rectification of the view-
ing ray after each new displacement along the viewing 
ray and the second one uses a rectification of the cone 
before each new displacement along the viewing ray. 
Algorithm 7 of this section presents an implementation 
of the new cone-tracing techniques in both cases.

Rectification of the viewing ray

This rectification consists of adapting the displacements 
along the viewing ray so that they take into account the 
forms of the quadratic surfaces presented in Figure 17. 
In both cases, the ti+1 parameter is calculated with the 
formula (4).

In the first case (Figure 17a), the point Pi+1 approaches 
the quadratic surface, and if there is an intersection, we 
converge quickly to the depth value 1 (Figure 22). This 
rectification is realized with the formula (11).

In the second case (Figure 17b), the point Pi+1 moves 
away from the quadratic surface, that is to say, that we 
move away from the depth value 1. And if there is no 
intersection, we converge quickly to the depth value 0 
(Figure 23). The rectification is realized with the  
formula (12).
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 » Figure 22: The viewing ray is inside the quadric, at 
each iteration, the point Pi+1 is rectified according to the 
value duti+1

 » Figure 23: The viewing ray is outside the quadric. At 
each iteration, the depth of the point Pi+1 is rectified 
according to the value –qti+1

2

Algorithms 3 and 4 implement this rectification. Fig-
ure 24 shows a comparison between a sphere ren-
dered without and with silhouette correction and 
Figure 25 shows a torus rendered with this approach 
and by highlighting the polygonal meshes.

Algorithm 3: CurvedTransformeRay1

Input: p0, v, w, C, tmax | Output: t

Begin

 t ← 0

 For i=1 To STEPS And t <= tmax Do

  p ← p0 + (v + w)*t

  radius ← C[p.x,p.y].blue

  depth ← C[p.x,p.y].alpha

  t ← t + (radius * Max(depth - p.z,

       0)/(radius + 
depth*Length(v.xy))

 EndFor

End

Algorithm 4: CurvedTransformeRay2

Input: p0, v, q, C, tmax | Output: t

Begin

 t ← 0

 For i=1 To STEPS And t <= tmax Do

  p ← p0 + v*t

  p.z ← p.z - t*t*q

  radius ← C[p.x,p.y].blue

  depth ← C[p.x,p.y].alpha

  t ← t + (radius * Max(depth - p.z,

      0)/(radius + depth*Length(v.xy))

 EndFor

End

 » Figure 24: Comparison of a sphere rendered by the 
original cone tracing techniques and by using the 
viewing ray rectification rectification. (a) Conservative 
technique. (b) Relaxed technique

 » Figure 25: Rendering of a torus by using the viewing 
ray rectification approach and by highlighting the 
polygonal meshes. (a) Conservative technique. (b) 
Relaxed technique



The change of the camera position does not influ-
ence the rectification process or the rendering qual-
ity since the rectification is realized in real-time and 
with each movement of the camera, we will have 
a new image rendered with a new rectification.

Rectification of the cone

The approximate surface has two forms, concave 
and convex (Figure 17). Instead of adapting the tex-
ture space to these forms, the cone is rectified so 
that it is influenced by the characteristics of the 
approximate surface. This rectification is realized 
before the cone tracing on its parameters, name-
ly the radius and the height (cone depth).

In the first case (Figure 17a), the cone must be enlarged 
so that it approaches the quadratic surface. The 
rectification consists of increasing the values of the 
cones parameters stored in the displacement map by 
using the distance d and the vector u (Figure 26).

 » Figure 26: The quadratic surface approaches the point 
Pi+1 , so we move forward rapidly towards the intersec-
tion point

The depths increase, which implies the increase of 
the cones' depths (heights). The new cone depth is:

                    (14)

For the cone radius, we have:

          (15)

Figure 26 shows that the displacement along the 
viewing ray with the rectified cone is faster than the 
base one because the displacement step increases. 
At each iteration, the cone rectification advances 
the Pi+1 point along the viewing ray, and we con-
verge more quickly in the case of an intersection.

In the second case (Figure 17b); the cone decreases 
so that it moves away from the quadratic surface. 
Indeed, the cone rectification consists of reducing 

the values of its parameters stored in the displace-
ment map by using the quadric q (Figure 27).

 » Figure 27: The quadratic surface moves away from  
the point Pi+1 , where the pixel belongs to the silhouette, 
we will don't have an intersection, so the pixel  
will be discarded

The depths decrease, which implies the decrease of 
cones depths (heights), so the new cone depth is:

              (16)

we have:

therefore, the new cone radius is given by:

         (17)

Figure 27 shows that the displacement along the 
viewing ray with the rectified cone is slower than the 
base one because the displacement step decreas-
es. At each iteration, the cone rectification moves 
back the point Pi+1 along the viewing ray, and we 
diverge in the case where there is no intersection.

In both cases, the ti+1 parameter is calculated by:

         (18)

The next point Pi+1 is computed with the formula 
(3). Algorithms 5 and 6 implement this rectification. 
Figure 28 shows a comparison between a sphere 
rendered without and with silhouette correction 
and Figure 29 shows a torus rendered with this 
approach and by highlighting the polygonal meshes.

Cone rectification does not depend on the depth 
map; it depends only on the quadratic parameters 
associated with the 3D surface. Also, the cones map 
is not attached to the base geometry onto which it is 
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mapped, because the rectification process is realized 
in real-time. This makes it possible to use the same 
rectification process and the same texture in real-time 
on different 3D objects, it means that the rectifica-
tion process and the cones map are independent of 
the surface on which they will be used (Figure 30).

 » Figure 28: Comparison of a sphere rendered by  
the original cone tracing techniques and by using the 
cone rectification. (a) Conservative technique. (b) 
Relaxed technique

 » Figure 29: Rendering of a torus by using the cone  
rectification approach and by highlighting the polygo-
nal meshes. (a) Conservative technique.  
(b) Relaxed technique

Algorithm 5: CurvedTransformeCone1

Input: p0, v, w, C, tmax | Output: t

Begin

 p ← p0 

 t ← 0

 For i=1 To STEPS And t <= tmax Do

  radius1 ← C[p.x,p.y].blue

  depth1 ← C[p.x,p.y].alpha

  radius2 ← radius1 + t*Length(w.xy)

  depth2 ← depth1 + t*w.z

  t ← t + (radius2 * Max(depth2 - p.z,

      0)/(radius2 + 
depth2*Length(v.xy))

  p ← p0 + v*t

 EndFor

End

Algorithm 6: CurvedTransformeCone2

Input: p0, v, q, C, tmax | Output: t

begin

 p ← p0 ,  t ← 0

 For i=1 To STEPS And t <= tmax Do

  radius1 ← C[p.x,p.y].blue

  depth1 ← C[p.x,p.y].alpha

  depth2 ← depth1 - t*t*q

  radius2 ← (radius1/depth1)*depth2

  t ← t + (radius2 * Max(depth2-

      p.z,0)/(radius2 + 
depth2*Length(v.xy))

  p ← p0 + v*t

 EndFor

End

 » Figure 30: Rendering of several 3D objects in real-time 
with the same cone rectification process and with  
the same texture. (a) Conservative technique.  
(b) Relaxed technique



The curved cone tracing algorithm

In this subsection, we present the implemen-
tation of the cone tracing algorithm with sil-
houette correction in the two approaches. 

In the rendering stage, the search for the inter-
section is performed in the texture space, but the 
calculations related to the quadratic approxima-
tion are performed in the tangent space where 
t is equal to 1 so that the quadratic distance is 
computed as the viewing ray progresses.

Algorithm 7: CurvedConeTracing

Input: (s,t), T, V, U, (Sx, 
Sy, Sz), C, R, (a,b) 

Output: p

Begin

 p0 ← (T.x*s, T.y*t, 0)

 v ← Normalize(V/(Sx, Sy, Sz))

 v.z ← - v.z 

 vz ← v.z 

 v ← v/v.z

 vR ← v*(Length(v.xy)/
(Sqrt(v.x*v.x+R*R*v.y*v.y))) 

 A ← a*U.x*U.x + b*U.y*U.y 

 B ← 2*a*V.x*U.x + 2*b*V.y*U.y - U.z

 C ← a*V.x*V.x + b*V.y*V.y - V.z

 D ← B*B - 4*A*C

 If D > 0 Then

  tmax ← tMax1(V, U, a, b))

  u ← Normalize(U/(Sx, Sy, Sz))

  w ← ((B - Sqrt(D))/-2*A)*u/vz

  t←CurvedTransformeR-
ay1(p0,vR,w,C,tmax)

  //t←CurvedTransforme-
Cone1(p0,vR,w,C,tmax)

 Else 

  q ← a*V.x*V.x + b*V.y*V.y

  q ← Sign(q) * Max(Abs(q), 0.001)

  tmax ← tMax2(V, q)

  q ← (q/Sz)/(vz*vz) 

  t←CurvedTransformeR-
ay2(p0,vR,q,C,tmax)  

  //t←CurvedTransforme-
Cone2(p0,vR,q,C,tmax)

 EndIf

 If t > tmax Then

  Discard

 Else

  p ← p0 + v*t

 EndIf

// Binary search (only in the 
case of relaxed cones)

 v ← (v*p.z)/2 // initial step size

 p ← p0 + v  // starting point

 For i=1 To STEPS Do

  depth ← C[p.x,p.y].alpha 

  v ← v/2

  If p.z < depth then

   p ← p + v 

  Else

   p ← p – v

  EndIf

 EndFor

End

Results and discussion

We have implemented the pre-processing part of the 
techniques discussed in this paper in C++. For ren-
dering, we have exploited the programmable units of 
the GPU, namely Vertex Shader and Fragment Shader 
using OpenGL/GLSL. The figures are obtained using a 
Core-i7-4510U-2GH-4CPUs architecture with 8GB of 
RAM and GeForce-GT-840M with 4GB of memory.

In this paper, we have implemented different techniques 
of per-pixel displacement mapping, namely, conservative 
cone tracing, relaxed cone tracing, and relief mapping, 
to make a comparison with the proposed improve-
ments. In our implementation, we have attached the 
magnification/minification method for the two camera 
positions (near and far) to the displacement map (cones 
map) and the color map using the same resolution 
(256×256, 512×512, 1024×1024, and 2048×2048). 

The images of the figures are rendered with 25 linear 
steps and 5 binary steps. For the texture resolution, 
we have used 512×512. Figure 24 and Figure 28 show 
comparisons of a sphere rendered without and with 
silhouette correction using the two rectifications, namely 
the viewing ray rectification and the cone rectification. 
The images of Figure 25 are rendered with the viewing 
ray rectification approach and those of Figure 29 are 
rendered with the cone rectification approach. Figure 30 
shows several 3D objects rendered with cone rectifica-
tion using the same texture.

Figure 31 shows a comparison between the original 
cone tracing techniques and the addition of the view-
ing ray rectification and cone rectification. The figure 
shows clearly that the original techniques suffer from 
the silhouette problem. That is to say, during the search 
for the intersection point, the technique considers 
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that each processed 3D surface is flat, and does not 
take into consideration its curvature. Then, the reliefs 
at the edges of the 3D object are confused with its 
surface, which produces an incorrect rendering. The 
two proposed rectifications solved this problem.

 » Figure 31: Comparison of a cylinder rendered by the 
cone tracing techniques. In the case of the original 
techniques (Halli et al., 2008), the reliefs near the sil-
houette are not rendered correctly, that is to say, the 
reliefs are confused with the surface of the cylinder. 
On the other hand, with the help of the viewing ray 
rectification and the cone rectification, the silhouette is 
visible at the edges of the 3D objects

Concerning the comparison between relief mapping 
with correct silhouette (Oliveira & Policarpo, 2005) and 
cone tracing combined with the proposed rectifications, 
we have found that the major problem is related to the 
grazing angles. The combination of cone tracing with 
the quadratic approximation solves this problem. 

Figure 32 shows the disappearance of the arti-
facts at the grazing angles in the images rendered 
by our rectifications. The same problem persists in 
the case of the interpenetration of 3D objects. 

The images qualities of Figure 24, Figure 25, Figure 
28, and Figure 29 are close, but in some cases, where 
the viewing ray or the depth scale is changed, small 
differences become visible as shown in Figure 33 and 
Figure 34. The figures show a comparison of a torus 
rendered with the approaches proposed in this paper.

 » Figure 32: The interpenetration of two 3D objects, a 
sphere, and a torus. We observe that the rendering 
done by the relief mapping with the correct silhouette 
present always the same problem related to the graz-
ing angles, this problem is solved by our proposed rec-
tifications as shown in the figure

 » Figure 33: Rendering of a torus by the approaches 
proposed in this paper with a depth scale equal to 0.4. 
(a) Conservative technique. (b) Relaxed technique. The 
approach by rectification of the viewing ray at the top 
and the approach by rectification of the cone at the 
bottom. Rendering differences are visible on the edges

The qualities of the images rendered by the two 
approaches (i.e. viewing-ray rectification and cone 
rectification) seem identical. Minimal differences 
can be observed when we use a minimal number 
of steps (i.e. linear steps ≤ 25, binary steps ≤ 5), 
but when the number of steps is greater, the qual-
ities of the rendering images become closer.

Figure 35 shows a cylinder rendered with the different 
approaches discussed in this paper using two resolutions 



 » Figure 34: Rendering of a torus by the four approaches of cone tracing with a depth scale equal to 0.6. (a) Conserva-
tive cone with viewing ray rectification. (b) Conservative cone with cone rectification. (c) Relaxed cone with viewing 
ray rectification. (d) Relaxed cone with cone rectification. We observe minimal differences at the edges between the 
different rendered images. 

 » Figure 35: Rendering of a cylinder with a texture resolution of 256×256 and 2048×2048 (depth map and color map 
have the same resolution). We observe that the resolution of the textures plays a very important role in the quality of 
the rendered images. The images rendered with a low resolution of texture present some aliasings which are correct-
ed by using a texture with a high resolution
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of the texture: 256×256 and 2048×2048 and two camera 
positions (far and near). The figure shows that the  
texture resolution plays a very important role in the 
quality of rendered images; a high resolution of texture 
allows having better quality and thus avoiding the alias-
ing problems.

Figure 36 shows a torus rendered with the cone tracing 
with the correct silhouette using different steps  
number and by highlighting the polygonal meshes.  
We observe that the number of steps plays a very 
important role in the appearance of the microreliefs and 
the correct silhouette.

The proposal of the hybrid cone in (Ouazzani Chahdi et 
al., 2017) and the dynamic relief mapping in (Ouazzani 
Chahdi et al., 2018) made it possible to improve the 
rendering quality for flat surfaces. But when it is about 
curved surfaces, the silhouette is not treated correctly. 
Indeed, figure 37 shows the difference between these 
last two techniques and the proposed contributions.

Figure 38 shows the difference between a sphere and a 
cylinder which are rendered by revolution-bump map-
ping (Figure 38a), extrusion-bump mapping (Figure 38b), 
and cone tracing with a correct silhouette (Figure 38c). 

Revolution and extrusion are based on a shape box and 
the combination of the bump mapping allows adding a 
microrelief effect and does not create real displacements 
of the reliefs. Using a new ray-tracing algorithm, the rev-
olution creates a 3D object around an axis of revolution 
based on a 2D form, and the extrusion extrudes this  
form upwards. 

The objects created by these two techniques are not rep-
resented by any parametric surface which allows giving 
information on its curvature for each pixel, moreover, at 
the extrusion or revolution phase, the curvature of the 
extruded or the revolved form is not taken into account, 
and in this case, the treatment of the silhouette will  
be limited.

 » Figure 37: Comparison of a torus rendered by the three 
techniques of cone tracing. (a) Hybrid cone (Ouazzani 
Chahdi et al., 2017). (b) Dynamic relief mapping (Ouaz-
zani Chahdi et al., 2018). (c) Cone tracing with the cor-
rect silhouette. The problem concerning the silhouette 
is located at the edges of the torus rendered by the two 
techniques (a) and (b). This problem is solved with the 
help of the two proposed rectifications

In the case of per-pixel extrusion mapping, a new 
ray-tracing algorithm has been introduced in (Halli 
et al., 2009). Its advantage is the acceleration of the 
search for the intersection point, but the disadvan-
tage is that it only deals with extrusion and does not 
take into account the silhouette treatment (Figure 

 » Figure 36: Rendering of a torus by the cone tracing with correct silhouette using a different number of linear steps 
(5, 10, and 20), We observe that the appearance degree of the silhouette depends on the number of the steps. The 
image rendered with 20 steps presents the best correct silhouettes.



39a). The advantage of the algorithms proposed in 
this paper is that they are suitable for relief or extru-
sion and solve the silhouette problem (Figure 39b).

 » Figure 39: Comparison of a torus rendered by two 
techniques. (a) Per-pixel extrusion mapping (Halli et 
al., 2009). (b) Cone tracing with the correct silhouette. 
Both techniques use a basic polygonal mesh but the sil-
houette problem is corrected only in the torus rendered 
by our approach

Figure 40 shows some extra examples with simple 
high-frequency displacements and no color texture. 
The 3D objects are rendered by the cone tracing 
technique with the correct silhouette and by using 
different depth maps and different depth values.

Figure 41 shows a vase rendered by the cone-tracing 
technique with the correct silhouette and by highlighting 
the basic polygonal mesh. The 3D object is rendered 
with different depth maps and different depth values. 
In the different images of the figure, we notice that the 
silhouette is corrected whatever the depth map used.

Generally, the combination of the quadratic approxi-
mation with the cone-tracing technique produces sat-
isfactory results, but in some cases, this combination 
produces holes as shown in Figure 42. This problem 
is due to the use of the quadratic approximation for 
the local representation of the surface at each vertex. 
Because sometimes, the viewing ray pierces the relief in 
the object space and leaves it in the texture space. This 
problem has been also mentioned in (Jeschke, Mantler & 
Wimmer, 2007; Chen & Chang, 2008; Na & Jung, 2008). 

To surmount this problem, the quadratic approximation 
can be replaced by a local space at each vertex of the 
3D mesh (Chen & Chang, 2008; Na & Jung, 2008). 

 » Figure 38: Rendering of a cylinder and a sphere. (a) Revolution with bump mapping (Ragragui et al., 2018a; 
Ragragui, et al., 2018b). (b) Extrusion with bump mapping (Ragragui et al., 2017; Ragragui et al., 2020). (c) Cone 
tracing with the correct silhouette. Revolved or extruded objects are rendered using a shape box and the bump 
mapping allows just a microrelief effect (simulation of small displacements). The objects created by cone tracing are 
rendered using a polygonal mesh and the reliefs are displaced without modifying the mesh geometry, moreover, the 
proposed cone rectifications make the silhouette visible
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Indeed, this space makes it possible to give an idea of 
the curvature of the surface at each vertex, suddenly, its 
exploitation makes it possible to adapt the cone tracing 
so it takes into account the curvature of the surface.

To compare the rendering speed (Frames Per Sec-
ond), we used high-resolution textures 1024×1024 
and 2048×2048, 35 linear steps, 10 binary steps, and 

a depth scale equal to 1. Table 1 shows the difference 
between the approaches discussed in this paper. 

The table shows also the views on which the speed 
calculation is performed.  It is clear that the approach 
by cone rectification is the fastest and relief mapping 
with correct silhouette remains always less fast com-
pared to the proposed rectifications released during 
the cone tracing phase. It is also noted that the relaxed 
technique is always slower than the conservative one 
because its speed is slowed down by the binary search.

As shown in Table 1 and Table 2, the rendering speed 
decreases by a means of 37FPS for the viewing ray 
rectification and by 24FPS for the cone rectification 
compared to the originals cone tracing techniques. 
This slowdown is due to the processing concerning the 
correction of the silhouette. The stability of the images’ 
quality rendered by per-pixel displacement mapping is 
influenced by the camera position and especially by the 
viewing angle, indeed, the ray-tracing algorithm uses 
the camera position to determine the viewing ray along 
which the searching for the intersection is performed. 

 » Figure 40: Rendering of different 3D objects by the 
cone tracing techniques with correct silhouette and 
by using simple high-frequency displacements and no 
color texture

 » Figure 41: Rendering of a vase with the cone tracing 
technique with correct silhouette by highlighting the 
basic polygonal mesh and by using different depth 
maps and different depth values

 » Figure 42: Distortions and holes are due to the qua-
dratic approximation.



Table 2
The average FPS (Frames Per Second) number of the decrease 
in the rendering speed of the two proposed rectifications 
compared to the original cone tracing techniques.

Viewing ray 
Rectification

Cone  
Rectification

Original 
Conservative 

Technique
36 20

Original Relaxed 
Technique 38 27

In the case of grazing viewing-angles, it is necessary 
to ensure that the silhouette is rendered correctly and 
that the iteration number of the ray-tracing algorithm is 
optimal. One of the solutions to have a stable quality is 
to determine the iteration number dynamically accord-
ing to the viewing angle (Ouazzani Chahdi et al., 2018).

One must finally note that the improvements pro-
posed in this article preserve all properties and 
characteristics of the cone-tracing technique with 
the latest improvements (Halli et al., 2008).

Conclusion

In this article, we have presented two new cone-tracing 
algorithms by combining the cone-tracing process with 
the quadratic approximation. This approximation consists 
of representing the 3D surface by approximate parame-
ters at each vertex constituting the corresponding mesh.

During the cone-tracing phase, the first algorithm con-
sists of using the parameters of the quadratic surface to 

rectify the viewing ray. This rectification makes it possi-
ble to know whether the viewing ray pierces or leaves 
the relief and it is realized after each new displacement 
along the viewing ray. The second algorithm uses these 
parameters to rectify the cones parameters (i.e. depth 
and radius) to be influenced by the characteristics of 
the approximate surface. This rectification makes it 
possible to know whether the displacements along the 
viewing ray make it possible to have or not an intersec-
tion and it is realized before each new displacement.

In some cases, the qualities of the rendered images of 
the two approaches remain almost identical, except 
for minimal differences. However, when it is about the 
rendering speed (Frames Per Second), the approach by 
cone rectification remains the fastest. Also, the rendering 
quality of the microreliefs and the silhouette depends 
on the texture resolution and the number of steps of 
the cone-tracing algorithms. The choice between the 
conservative and the relaxed technique, the texture res-
olution, and the number of steps can be made according 
to the criterion of rendering quality/rendering speed.

The advantage of the cone tracing techniques is that 
they can be combined with any silhouette correction 
approach with several possible improvements. Indeed, 
the processing of the silhouette depends on the ray-trac-
ing algorithm, and how the fragments, belonging to the 
silhouette, are determined. So, a good coupling makes 
it possible to have a better algorithm of ray tracing 
and which supports the treatment of the silhouette. 
Another advantage of cone tracing is that it is possible 
to integrate it into the pipeline of new graphics cards 
since they integrate today the ray-tracing technology.

Table 1
Comparison of the rendering speed FPS (Frames Per Second) between the discussed approaches with a torus. The approach by the 
cone rectification is the fastest.

Conservative Technique Relaxed Technique

Screen
1000×600 Texture

Resolution

View
ing ray 

rectification

Cone 
rectification

W
ithout 

rectification

View
ing ray 

rectification

Cone 
rectification

W
ithout 

rectification
Relief Mapping 

With Correct 
Silhouette

1024² 210 225 227 198 210 226 202

2048² 115 127 140 107 117 141 105

1024² 230 258 280 211 227 262 197

2048² 140 148 190 130 137 168 117

Average 173 189 209 161 172 199 155
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