
Journal of Graphic Engineering and Design, Volume 13 (1), 2022. 21

Introduction

Real-time rendering using traditional methods is still
hampered by a large amount of graphics primitives
(polygons and vertices) that the graphics card must
calculate. This has an impact on the interaction of 3D
scenes, particularly those with complex 3D objects.
Image-based rendering techniques (IBMR) gained
traction as an alternative to traditional polygon-based
rendering approaches because they can show 3D sur-
faces in real-time at a low-performance cost while

avoiding mesh densification. These approaches use
textures to store a collection of geometry-related data
that will be retrieved during the ray-tracing algorithm
stage, hence bypassing the computation of geometry.

Our research focuses on revolution-bump mapping, a
technique that falls under the category of image-based
modeling and rendering approaches (Halli et al., 2010;
Ragragui et al., 2018). Because it uses a simple shape box
and two textures. The first texture is used to produce the
revolution surface, while the second is utilized to provide

Anouar Ragragui 1
Adnane Ouazzani
Chahdi 2
Akram Halli 3
Khalid Satori 2
Hicham El Moubtahij 4

¹ Abdelmalek Essaadi University,
LSA Laboratory National School of
Applied Sciences (ENSAH),
Tetouan, Morocco
2 Sidi Mohamed Ben Abdellah
University, LISAC Laboratory
Faculty of Science Dhar El Mahraz,
Fez, Morocco
3 Moulay-Ismail University,
OMEGA-LERES Laboratory
FSJES-UMI, Meknes, Morocco
4 Ibn Zohr University, Modeling,
Systems, and Technologies of
Information Team, High School
of Technology, Agadir, Morocco

Corresponding author:
Anouar Ragragui
e-mail:
a.ragragui@uae.ac.ma

First recieved: 5.10.2021.
Revised: 18.11.2021.
Accepted: 23.11.2021.

ABSTRACT

Creating 3D computer-generated surfaces has long been a difficult
challenge in computer graphics, particularly when portraying massive
landscapes with extremely detailed surfaces in real-time. Despite significant
advances in computer vision in recent years, there is still a great demand
for improved realism and the capacity to edit computer-generated 3D
surfaces in real-time. We propose three scalable and faster algorithms
for creating extended, beveled, and chamfered patterns using only two
textures and a simple shape box. The proposed techniques produce
visually pleasing results in real-time while retaining optimal rendering
performance and without increasing the mesh density of the shape box.

KEY WORDS
Per-pixel revolution mapping, image-based modeling, rendering technique,
bump mapping, ray-tracing

The extensions of
revolution-bump mapping

Original scientific paper http://doi.org/10.24867/JGED-2022-1-021

https://orcid.org/0000-0001-5290-4130
https://orcid.org/0000-0003-4463-5916
https://orcid.org/0000-0002-5188-4032
https://orcid.org/0000-0003-3486-4950
http://doi.org/10.24867/JGED-2022-1-021

the microrelief effect. We were able to greatly refine this
approach such that it could generate extended, beveled,
and chamfered revolution objects while preserving the
features on their surfaces. Our approaches take advan-
tage of the fact that the surface revolution is modified
without the need to recalculate the texture (shape
map). On the other hand, we can control in real-time
the effect of extension, bevel, and chamfer parameters.

Related Work

Texture mapping is a method of adding realism to a
computer-generated 3D shape introduced in (Catmull,
1974; Heckbert, 1986). This technique is the simplest
and oldest of image-based techniques. It aims to find
the relation between the texture elements defined in
the two-dimensional texture space and the surface
defined in a three-dimensional space. In effect, it is a
process that takes a surface and changes its appear-
ance at each location using an image, function, or other
data set. It should be noted that this technique was
extended by Blinn and Newell (Blinn & Newell, 1976).

In 1978, Blinn introduced, in the article (Blinn, 1978),
a method to achieve what is called bump mapping.
The latter simulates the wrinkles of a surface without
the need to modify the geometry of the 3D model.
The normal of a given surface is perturbed according
to the partial derivatives of the applied texture, called
the height map. This texture is a simple grayscale
image, which can be seen as an elevation map. The
perturbed normal is then used instead of the original
normal when shading the surface according to the
Blinn-Phong model (Blinn, 1977). This method chang-
es the appearance of wrinkles and micro-reliefs seen
on the surface of 3D models. An improvement of the
bump mapping is the normal mapping (Peercy, Airey
& Cabral, 1997). Its principle is to use a texture to save
not the variation, but the coordinates of the normal for
each fragment and then use them in the shading mod-
el. The principle is to perform the calculations directly
in the tangent space. This space is defined for each
face of the mesh and keeps the normal unchanged.

Displacement mapping is the first method to use the
height map to add detail to a surface (Cook, 1984; Lee,
Moreton & Hoppe, 2000). It masked almost all of the
defects in the bump mapping and the normal map-
ping, as the surface geometry is completely changed
instead of just disturbing the normal. This approach is
based on the subdivision and the displacement of the
sub-polygons of the surface along the normal to the
vertices based on the distances obtained from the dis-
placement map. The result is a more realistic rendering
where the displaced geometry is also visible in the sil-
houette. The subdivision of a base surface considerably
increases the number of graphic primitives (vertices and

polygons) that the graphic map must manage, and this
influences the execution time in the rendering stage.
From there, research is focused on alternative rendering
methods based on mesh simplification and ray tracing
algorithms. The techniques presented in (Gumhold &
Hüttner, 1999; Doggett & Hirche, 2000) took a different
approach, their methods truly modified the geometry
in such a way as to minimize the number of triangles
rendered as a function of viewpoint. They proposed
to use an adaptive subdivision for the displacement
map to limit the number of polygons generated.

Per-pixel displacement mapping is an interesting
improvement of the per-vertex displacement mapping
technique introduced in (Patterson, Hoggar & Logie,
1991), the strong point of this approach is that it increas-
es the realism of the surface without densifying the
mesh. This method aims at solving the bottleneck caused
by the very large number of graphics primitives sent by
the vertex displacement mapping to the graphics proces-
sor (polygons, 3D points, normals, texture coordinates...).

Parallax mapping not only disrupts the normals but also
changes the texture coordinates used, without chang-
ing the geometry of the object (Kaneko et al., 2001).
Its principle is quite simple, it aims to shift the texture
coordinates to perform an approximate search for the
point of intersection between the view radius, expressed
in tangent space, and the relief stored in the height map.
To overcome the problems of simple parallax mapping,
Welsh introduced parallax mapping with offset limitation
(Welsh, 2004). A better improvement of the parallax
mapping is called the Steep Parallax Mapping. It consists
in assuming that the surface is always flat, but its normal
vector can be arbitrary (McGuire & McGuire, 2005).

Binary search is a method specifically designed to con-
verge quickly to the point of intersection to ensure
fast rendering. This technique assumes that the actual
intersection point is either at the top or bottom of
the relief depth value retrieved from the displace-
ment map (Policarpo, Oliveira & Comba, 2005).

Ray tracing uses the viewing ray to determine the point
of intersection. It is also called linear search. It has been
used alone in parallax mapping (McGuire & McGuire,
2005), as well as in (Policarpo, Oliveira & Comba, 2005)
and (Tatarchuk & Natalya, 2006) as a first step.

Relief mapping is among the popular methods of real-
time rendering since it quickly converges to the point
of intersection that lies between the view ray and the
relief (Policarpo, Oliveira & Comba, 2005; Policarpo &
Oliveira, 2006). This is an extension of another tech-
nique called relief texture mapping (Oliveira, Bishop
& McAllister, 2000). While this method will function
and render satisfactorily in most cases, it may fail in
some special situations. This problem will be solved

22

Journal of Graphic Engineering and Design, Volume 13 (1), 2022. 23

in (Oliveira & Policarpo, 2005), whose principle is to
reinforce each vertex of the polygonal model with two
coefficients representing a quadric surface that is locally
close to the geometry of the object (Jean, 2002). This
quadratic surface is used to produce correct renderings
of objects and their silhouettes. Another improvement
of relief mapping is proposed in (Ouazzani Chahdi et
al., 2018) which is called dynamic relief mapping.

Sphere tracing uses spheres to converge most quick-
ly to the intersection point. It was first introduced in
(Hart, 1996) and then it was used for height map search
using ray tracing (Donnelly, 2005). It is based on two
main elements, namely the distance map and an iter-
ative algorithm, whose goal is to find the first point of
intersection between the view radius and the relief.
Further improvements are presented in (Fabbri et al.,
2008; Gustavson & Strand, 2011), whose objective is to
improve the algorithm for computing the distance map.

Cone tracing is a technique that calculates the empty
space, during the pre-processing phase, around each
pixel of the depth map as an open cone at the top and
then stores its ratio in a texture called a cone map.
Subsequently, the cone map is used when searching
for the intersection to converge more quickly on the
intersection point without the risk of avoiding it. They
exist in two versions, the first is a conservative tech-
nique (Dummer, 2006) and the second is a relaxed
technique (Policarpo & Oliveira, 2007) coupled with a
binary search. These two versions have been improved
in (Halli et al., 2008). These improvements consist in
using O(n) linear algorithms instead of O(n²) quadratic
algorithms to compute the conservative cone and the
relaxed cone. Then calculate and store the radius of
the cones instead of their ratio to have cone angles
on the order of π/2 rather than π/4. Finally extend the
technique to support non-square textures by using
elliptical cone rectification during the rendering step.

Halli et al. introduced a new image-based approach for
rendering revolved surfaces (Halli et al., 2009; Halli et
al., 2010). Indeed, revolution mapping and extrusion
mapping are based on a single RGBA texture that stores
all the related data to the geometry. Then, the resulting
texture is mapped on a shell box using 3D texture coor-
dinates. This technique allows rendering full models and
limits considerably the number of graphic primitives
constituting the complex scenes. Further improvements
of these techniques are presented in (Ragragui et al.,
2018; Ragragui et al., 2020; Ouazzani Chahdi et al., 2021).

Revolution-bump mapping

The revolution-bump mapping uses a 2D binary form
stored in the shape map, where only the zero-valued
pixels constitute the base shape of the pattern that will

be revolved during the rendering stage. This technique
is based on ray tracing, and uses the Euclidean Dis-
tance Transform (EDT) computed from the base shape
to skip the empty space and speed up the search for
the intersection point between the viewing ray and
the generated surface (Danielsson, 1980; Fabbri et al.,
2008; Gustavson & Strand, 2011). It also relies on bump
mapping to add realism to 3D objects by adding the
illusion of microreliefs. The revolution-bump mapping
makes it possible to considerably limit the number of
graphic primitives constituting the complex scenes.

Revolution mapping

Per-pixel revolution mapping is an image-based modeling
and rendering technique. It consists of generating very
convincing surfaces of revolution without polygonization
effect which are displayed interactively. The principle
is to generate virtual surfaces using only a shape map
that contains the geometry data of the basic form (Fig-
ure 1). This geometry represents the revolution of the
basic form plated on the shape box using the texture
coordinates (Figure 2). These coordinates are calculated
using cylindrical or spherical projection. The revolution
mapping is based on three main elements: the shape
map, the ray tracing algorithm, and the shape box.

 » Figure 1: The shape map that will be sent to the
graphic card

Shape map is an RGBA texture that contains the
data needed for the revolution mapping algorithms
(Figure 1). The alpha channel is used to store the
basic form represented by a binary image. The blue
channel is used to store the distance map. Finally,
the red and green channels contain respectively the
x and y components of the gradient which will be
used to determine the coordinates of the normal.

Ray tracing algorithm consists of searching for the inter-
section of the viewing ray with the revolved surface by
using the distances stored in the shape map (see Figure
2). Let (u,v) be the coordinates of the current pixel and
p0 be the starting point of the search with the coordi-

nates (x0 , y0 , z0) = (u, v, 0), and let V be the normalized
view direction determined by going from the viewpoint
to the starting point p0 , all of which is expressed in
the texture space associated with the current pixel.

 » Figure 2: Ray tracing process associated with revo-
lution mapping. At each iteration, a circle tracing is
performed to converge quickly and without the risk of
skipping the first intersection.

At each iteration, the minimum distance di between
the point pi and the revolved object is extracted from
the blue channel of the shape map and a circle trac-
ing is performed to advance to the intersection point
without the risk of skipping the first intersection.
The next point pi+1 is determined by the formula:

 (1)

To retrieve the distance di between the current position
and the base shape that is stored in the alpha channel of
the shape map, the revolution algorithm uses the coor-
dinates (si ,ti) (Figure 3). Using the following formula:

 (2)

With :

From Figure 3, the normal is obtained from the com-
ponents (Gintx , Ginty) of the gradient unit stored in
the red and green channels of the shape map:

(3)

The shape box will be created from the shape map, as
shown in Figure 4.a. W and H are the dimensions of the
shape map. As well as S is a real-time editable vector,
representing the scale of the shape box in the scene
frame. The values in blue are the texture coordinates.

From figure 4.b we notice that the model is displayed in
its entirety with a correct rendering of the silhouette.

 » Figure 3: The calculation of the normal and tangent at
the intersection point.

 » Figure 4: Creating the shape box. (a) Shape box that
corresponds to the revolved object where the shape
is placed vertically on the surface. (b) Rendering of a
revolved object using the shape box.

2. Calculation of the
perturbed normal

The problem of revolution mapping is that the revolved
object is created without any microrelief effect, so
it does not take into account their realism. From
this observation, the solution is to combine bump
mapping with revolution mapping, which is called
revolution-bump mapping (Ragragui et al., 2018).

Revolved surfaces are created without any polygonal
meshes and do not possess any parametric equation.
Therefore, we must compute the tangent space asso-
ciated with each intersection point. Therefore, the
perturbed normal N'(u,v) is calculated from the sum
of the normal vector N(u,v) and the displacement
vector D(u,v) according to the following equation:

24

Journal of Graphic Engineering and Design, Volume 13 (1), 2022. 25

(4)

With:

 (5)

The parameter a is a factor that can be controlled in
real-time and is used to control the depth scale of the
microrelief. The partial derivatives ∂H(u,v) are computed
along u and v of the height map H(u,v) in the preprocess-
ing stage. Then they are saved in the red and green chan-
nels of a texture that we call the depth map (Figure 5).

 » Figure 5: The calculation of the partial derivatives
of the height map. (a) The height map.
(b) The depth map.

This map will be sent to the graphic card during
the rendering stage. Finally, the tangent can
be deduced graphically using Figure 3:

 (6)

While the vector Bint is obtained by the vector product
of the two vectors Nint and Tint, using the formula:

 (7)

The extensions of revolution-
bump mapping

Extended revolution-bump mapping

Since the level lines of the distance map are extended
forms of the base form, we can use them to create a sur-
face of outside revolution. To do this, we simply replace
the distance in the revolution-bump algorithm with the
distance to the extended shape. Formula (1) becomes:

 (8)

Where e is a parameter that can be modified in
real-time, allow modulating the extension effect.

Even though the extended revolution-bump mapping
is slightly slower than the revolution-bump mapping,
it can be very useful for smoothing shapes as shown in
Figure 6. It should be noted that for the extended rev-
olution-bump mapping, the normal vector Nint and the
tangent vector Tint remain the same as for the revolu-
tion-bump mapping, since the level lines of the distance
map are extended forms of the base form (Figure 7).

2. Beveled revolution-bump mapping

The bevel consists of creating an outwardly extend-
ed revolution that varies as a function of depth. We
start by searching for the intersection based on the
distance to the original form by using formula (8)
(because we are combining the bevel with the extend-
ed revolution-bump mapping). During this search, it

 » Figure 6: Rendering of an object using the extended revolution-bump mapping. These images are taken in real-time
by changing only the value of the parameter e.

is necessary to check if the current position is inside
the geometry by using the following difference:

 (9)

Where b is a parameter to control the effect of the bevel
and ∆di denotes the width of the bevel at zi. The
intersection point is determined according to the
following system:

 (10)

 » Figure 7: Illustration of an example of the distance map
that is stored in the blue channel of the shape map.

If ∆di is positive, we calculate the next position pi+1 using
equation (10), because the point pi in the current step
is always outside the geometry. If ∆di is negative, we
get the point which is inside the beveled surface like
the point p3 in Figure 8. Then we proceed to the binary
refinement by successively dividing the last distance
max (0,di-1 - e) by 2 to converge to the intersection point
pint of the geometry with the viewing ray V (Figure 8).

In contrast to the extended revolution-bump mapping,
the z coordinates of the normal and y coordinates of the
tangent must be changed. However, they remain uniform
and are obtained by rotation of the gradient (Figure 9).
The coordinates of the normal in this case become:

 (11)

And the coordinates of the tangent are :

 (12)

 » Figure 8: The intersection of the viewing ray with the
beveled surface.

 » Figure 9: Diagram for the calculation of the normal
vector and the tangent vector in the case of the
beveled surface.

These two vectors, normal and tangent, must then
be normalized before the perturbation of the nor-
mal N'int by using formulas (4) and (5). As illustrat-
ed in the Figure 10, this enhancement enables for
real-time modification of the revolution surface.

Chamfered revolution-bump mapping

The revolution-bump mapping with chamfer con-
sists of limiting the effect of the bevel to a certain
depth value to have edges with chamfer (Figure
11). To do this, simply replace formula (9), which
defines the test above/below the beveled revolu-
tion-bump mapping, by the following formula:

 (13)

With c is a parameter that allows modulating the
chamfer effect. The modification of the z-coordi-
nate of the normal must also be limited to the depth
c. Note that the search for the intersection point is
done according to the formula (10). For the revolu-
tion-bump mapping with chamfer, the normal and
tangent will be equivalent to formulas (11) and (12)
respectively if its depth is greater than the value of c in
formula (13). Otherwise, these vectors are equivalent
to one of the extended revolution-bump mapping.

26

Journal of Graphic Engineering and Design, Volume 13 (1), 2022. 27

Results and Discussion

To measure the rendering speed of the different tech-
niques discussed in this paper, we have implemented
the preprocessing stage of the algorithm that will com-
pute the shape map and the displacement map in C++.
After that, at the rendering stage, we have exploited
the two programmable units of the graphics card (GPU),
namely the Vertex Shaders and the Fragment Shaders
using OpenGL associated with its parallel processing
programming language GLSL. The measurements and
figures presented in this section were performed using
an Intel Core i7-3612QM 2.10GHz CPU architecture with
8GB of RAM and a GeForce GT 630M graphics card with
1024Mb of memory. Note that before starting the ren-
dering, we send to the graphics card the shape map and

the displacement map created during the preprocessing
stage as well as the coordinates of the shape box.

The images of the figures used to compare performance
are rendered with textures resolution equal to or great-
er than 512×512, and with the microrelief depth scale
parameter a=1. In addition, these images are screenshots
taken during the test, and that the shape box occupies
most of the screen. Note that the total number of iter-
ations for the intersection search is 20. For the last two
techniques, namely the beveled revolution-bump map-
ping and chamfered revolution-bump mapping, we set
the total number of iterations to 10 for the binary search.

Figures 6, 10, and 11 show the techniques discussed in
this paper. We notice that the images rendered by the

 » Figure 10: Rendering of an object using the beveled revolution-bump mapping. These images are taken in real-time
by changing the value of the b parameter.

 » Figure 11: Rendering of an object using chamfered revolution-bump mapping. The images are taken in real-time by
setting the value of b to 0.9 and changing the value of the parameter c.

28

approaches proposed in this paper present realistic
surfaces of revolution and that we can change them in
real-time. Note also that the models created by these
techniques present microrelief on their surfaces. Figure
12 shows a comparison between some models created
by the different techniques discussed in this paper. These
objects are obtained from a low-density mesh (shape
box), on which a shape map and a displacement map

have been plated. We can notice the variety of objects
that can be created by these techniques and the change
of the surface in real-time that we can control as well as
the important number of graphical primitives (vertices
and polygons) that can be avoided. The approaches
discussed in this paper allow rendering revolved objects
with a microrelief effect and without mesh densification.

 » Figure 12: Some objects were created using the techniques discussed in this paper. (a) Revolution-bump mapping. (b)
Extended revolution-bump mapping. (c) Beveled revolution-bump mapping. (d) Chamfered revolution-bump mapping.

Journal of Graphic Engineering and Design, Volume 13 (1), 2022. 29

Figure 13 shows that the approaches presented in this
paper can be also applied for the technique of revolution
with repetition.

Table 1 shows a comparison of the rendering speed of
the extended revolution-bump mapping with different
values of the parameter e that extends the revolution
surface, as well as the view on which the speed cal-
culation is performed. We notice that the rendering
speed of our approach decreases. This slowdown is
due to the treatment concerning the enlargement
of the generated surface, which is quite normal.

Table 1
Comparison of rendering speed in frames per second using the
extended revolution-bump technique with different values of
parameter e.

Model Screen
shot e = 0,25 e = 0,5 e = 0,8

800 x 600 180 170 160

1366x706 150 145 130

Concerning the beveled revolution-bump map-
ping, Table 2 shows that the speed increases even
if we increase the depth scale parameter b. This
is because every time the value of b increases,
the search interval of the intersection decreas-
es, hence the number of iterations decreases.

Table 2
Comparison of the rendering speed in frames per second of the
beveled revolution-bump mapping using different values of the
parameter b.

Model Screen
shot b = 0,25 b = 0,5 b = 0,8

800 x 600 200 210 230

1366x706 190 195 200

Table 3 shows a comparison of the rendering
speed of the chamfered revolution-bump map-
ping by setting the value of b = 0.8 and by varying
the values of the parameter c. It can be seen that
the speed increases when we increase the val-
ue of the parameter c. This increase is because we
reduced the search interval of the intersection.

 » Figure 13: Models rendered using extended, beveled and chamfered revolution-bump mapping with repetition.

Table 3
Comparison of rendering speed in frames per second using
different values of c and setting the value b = 0.8 using the
chamfered revolution-bump technique.

Model Screen
shot c = 0,25 c = 0,5 c = 0,7

800 x 600 195 209 216

1366x706 174 176 182

Conclusion

In this paper, we presented three new algorithms of
the revolution-bump mapping technique that allow the
creation of extended, beveled, and chamfered objects.

The proposed algorithms allow real-time control while
maintaining the interactivity and visual richness of the
created objects. The proposed algorithms allow real-time
control while maintaining the interactivity and visual
richness of the created objects. In addition, they avoid
saturating the graphics pipeline, which can be caused by
processing a very large number of vertices and polygons.

Extended, beveled, and chamfered revolution-bump
mapping represent an interesting solution capable of
providing control of the revolution surface and appre-
ciable rendering quality. These techniques derive
their advantages from the fact that they bypass the
mesh densification because they use only a simple
box, the tangent space associated with each inter-
section point, and two textures. The first texture is
used to generate the surface of revolution while the
second one is used to add the microrelief effect. The
proposed improvements respect two objectives,
namely the required rendering speed and the display
of the revolution models in a very convincing way.

References

Blinn, J. F. (1977) Models of light reflection for com-
puter synthesized pictures. In: Proceedings of
the 4th annual conference on Computer graphics
and interactive techniques, SIGGRAPH'77, 20-22
July 1977, San Jose, California. New York, Asso-
ciation for Computing Machinery. pp. 192–198.
Available from: doi: 10.1145/563858.563893

Blinn, J. F. (1978) Simulation of wrinkled surfaces. ACM
SIGGRAPH Computer Graphics. 12 (3), 286–292.
Available from: doi: 10.1145/965139.507101

Blinn, J. F. & Newell, M. E. (1976) Texture and reflec-
tion in computer generated images. ACM SIG-
GRAPH Computer Graphics. 10 (2), 266–266.
Available from: doi: 10.1145/965143.563322

Catmull, E. E. (1974) A subdivision algorithm
for computer display of curved surfaces.
PhD thesis. The University of Utah.

Cook, R. L. (1984) SHADE TREES. In: Proceedings of the
11th annual conference on Computer graphics and
interactive techniques, SIGGRAPH’84, 23-27 July
1984, Minneapolis, Minnesota. New York, Asso-
ciation for Computing Machinery. pp. 223-231.

Danielsson, P. E. (1980) Euclidean distance map-
ping. Computer Graphics and Image Pro-
cessing. 14 (3), 227–248. Available from:
doi: 10.1016/0146-664X(80)90054-4

Doggett, M. & Hirche, J. (2000) Adaptive view
dependent tessellation of displacement maps. In:
Proceedings of the SIGGRAPH/Eurographics Work-
shop on Graphics Hardware, HWWS'00, 21-22
August 2000, Interlaken, Switzerland. New York,
Association for Computing Machinery. pp. 59–66.
Available from: doi: 10.1145/346876.348220

Donnelly, W. (2005) Per-Pixel Displacement Mapping
with Distance Functions. In: Pharr, M. (ed.) GPU
Gems 2: Programming Techniques For High-Perfor-
mance Graphics And General-Purpose Computation.
London, Addison-Wesley Professional, pp. 123–137.

Dummer, J. (2006) Cone step mapping: An iter-
ative ray-heightfield intersection algorithm.
Available from: http://scholar.google.com/schol-
ar?hl=en&btnG=Search&q=intitle:Cone+Step+-
Mapping:+An+iterative+ray-heightfield+intersec-
tion+algorithm#0 [Accessed: 20th October 2021]

Fabbri, R., Costa, L. F., Torelli, J. C., & Bruno, O.
(2008) 2D Euclidean distance transform algo-
rithms. ACM Computing Surveys. 40 (1), 1–44.
Available from: doi: 10.1145/1322432.1322434

Gumhold, S. & Hüttner, T. (1999) Multiresolution render-
ing with displacement mapping. In: 1999 SIGGRAPH/
EUROGRAPHICS Workshop On Graphics Hardware,
HWWS'99, 8-9 August 1999, Los Angeles, California.
New York, Association for Computer Machinery. pp.
55–66. Available from: doi: 10.1145/311534.311578

Gustavson, S. & Strand, R. (2011) Anti-aliased
Euclidean distance transform. Pattern Rec-
ognition Letters. 32 (2), 252–257. Available
from: doi: 10.1016/j.patrec.2010.08.010

Halli, A., Saaidi, A. Satori, K. & Tairi, H. (2008) Per-Pixel
Displacement Mapping Using Cone Tracing. Interna-
tional Review on Computers and Software. 3 (3), 1–11.

Halli, A., Saaidi, A. Satori, K. & Tairi, H. (2009) Per-Pixel
Extrusion Mapping. IJCSNS International Journal of
Computer Science and Network Security. 9 (3), 118-124.

30

https://dl.acm.org/doi/10.1145/965141.563893
https://dl.acm.org/doi/abs/10.1145/195826.197312
https://dl.acm.org/doi/abs/10.1145/965143.563322
https://www.sciencedirect.com/science/article/abs/pii/0146664X80900544
https://dl.acm.org/doi/10.1145/346876.348220
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cone+Step+Mapping:+An+iterative+ray-heightfield+intersection+algorithm#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cone+Step+Mapping:+An+iterative+ray-heightfield+intersection+algorithm#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cone+Step+Mapping:+An+iterative+ray-heightfield+intersection+algorithm#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cone+Step+Mapping:+An+iterative+ray-heightfield+intersection+algorithm#0
https://dl.acm.org/doi/10.1145/1322432.1322434
https://dl.acm.org/doi/10.1145/311534.311578
https://dl.acm.org/doi/10.1016/j.patrec.2010.08.010

Journal of Graphic Engineering and Design, Volume 13 (1), 2022. 31

Halli, A., Saaidi, A. Satori, K. & Tairi, H. (2010)
Extrusion and revolution mapping. ACM
Transactions on Graphics. 29 (5), 1–14. Avail-
able from: doi: 10.1145/1857907.1857908

Hart, J. C. (1996) Sphere tracing: A geometric method
for the antialiased ray tracing of implicit sur-
faces. Visual Computer. 12 (10), 527–545. Avail-
able from: doi: 10.1007/s003710050084

Heckbert, P. S. (1986) Survey of Texture Mapping. IEEE
Computer Graphics and Applications. 6 (11), 56–67.
Available from: doi: 10.1109/MCG.1986.276672

Jean, S. P. (2002) A Survey of Methods for Recov-
ering Quadrics in Triangle Meshes. ACM
Computing Surveys. 34 (2), 211–262. Avail-
able from: doi: 10.1145/508352.508354

Kaneko, T., Takahei, T., Inami, M., Kawakami, N., Yan-
agida, Y., Maeda, T. & Tachi, S. (2001) Detailed
Shape Representation with Parallax Mapping.
In: Proceedings of the ICAT 2001, 5-7 Decem-
ber 2001, Tokyo, Japan. pp. 205–208.

Lee, A., Moreton, H. & Hoppe, H. (2000) Displaced
subdivision surfaces. In: Proceedings of the 27th
annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’00, 23-28 July
2000, New Orleans, Louisiana. New York, ACM
Press/Addison-Wesley Publishing Co. pp. 85-94.
Available from: doi: 10.1145/344779.344829

McGuire, M. & McGuire, M. (2005) Steep Paral-
lax Mapping. Available from: https://casual-ef-
fects.com/research/McGuire2005Parallax/
index.html [Accessed 20th October 2021]

Oliveira, M. M., Bishop, G. & McAllister, D. (2000) Relief
texture mapping. Proceedings of the 27th annual con-
ference on Computer graphics and interactive tech-
niques, SIGGRAPH ’00, 23-28 July 2000, New Orleans,
Louisiana. New York, ACM Press/Addison-Wesley Pub-
lishing Co. pp. 359–368. doi: 10.1145/344779.344947

Oliveira, M. M. & Policarpo, F. (2005) An Efficient
Representation for Surface Details. 55 (51), 1–8.

Ouazzani Chahdi, A., Ragragui, A., Halli, A. & Satori,
K. (2018) Dynamic relief mapping. In: 2018 Inter-
national Conference on Intelligent Systems
and Computer Vision (ISCV), 2-4 April 2018,
Fez, Morocco. New York, IEEE. pp. 1–6. Avail-
able from: doi: 10.1109/ISACV.2018.8354053

Ouazzani Chahdi, A., Ragragui, A., Halli, A. & Satori, K.
(2021) Per-Pixel Extrusion Mapping with Correct
Silhouette. Computer Science. 22 (3), 407-432.
Available from: doi: 10.7494/csci.2021.22.3.3337

Patterson, J. W., Hoggar, S. G. & Logie, J. R.
(1991) Inverse Displacement Mapping. Com-
puter Graphics Forum. 10 (2), 129–139. Avail-
able from: doi: 10.1111/1467-8659.1020129

Peercy, M., Airey, J. & Cabral, B. (1997) Efficient bump
mapping hardware. In: Proceedings of the 24th
annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’97, 3-8 August
1997, Los Angeles, California. New York, ACM Press/
Addison-Wesley Publishing Co. pp. 303–306.
Available from: doi: 10.1145/258734.258873

Policarpo, F. & Oliveira, M. M. (2006) Relief map-
ping of non-height-field surface details. In: Pro-
ceedings of the 2006 symposium on Interactive
3D graphics and games, SI3D ’06, 14-17 March
2006, Redwood City, California. New York, Asso-
ciation for Computing Machinery. pp. 55-62.
Available from: doi: 10.1145/1111411.1111422

Policarpo, F. & Oliveira, M. M. (2007) Relaxed cone step-
ping for relief mapping. In: Nguyen, H. (ed.) GPU Gems
3. London, Addison-Wesley Professional, pp. 409–428.

Policarpo, F., Oliveira, M. M. & Comba, J. L. D. (2005)
Real-time relief mapping on arbitrary polygonal
surfaces. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH
’05, 31 July - 4 August 2005, Los Angeles, California.
New York, Association for Computing Machinery, p.
935. Available from: doi: 10.1145/1186822.1073292

Ragragui, A., Ouazzani Chahdi, A., Halli, A. & Satori,
K. (2018) Revolution mapping with bump map-
ping support. Graphical Models. 100, 1–11. Avail-
able from: doi: 10.1016/j.gmod.2018.09.001

Ragragui, A., Ouazzani Chahdi, A., Halli, A. & Satori,
K. (2020) Image-based extrusion with realis-
tic surface wrinkles. Journal of Computational
Design and Engineering. 7 (1), 30–43. Avail-
able from: doi: 10.1093/jcde/qwaa004

Tatarchuk, N. & Natalya (2006) Practical parallax
occlusion mapping with approximate soft shad-
ows for detailed surface rendering. In: ACM SIG-
GRAPH 2006 Courses, SIGGRAPH’06, 30 July - 3
August 2006, Boston, Massachusetts. New York,
Association for Computing Machinery. p. 81.
Available from: doi: 10.1145/1185657.1185830

Welsh, T. & Infiscape Corporation (2004) Parallax
mapping with offset limiting: A per-pixel approxi-
mation of uneven surfaces. Available from: http://
scholar.google.com/scholar?hl=en&btnG=-
Search&q=intitle:Parallax+Mapping+with+Off-
set+Limiting+:+A+Per+?+Pixel+Approximation+of+Un-
even+Surfaces#0 [Accessed 20th October 2021].

© 2022 Authors. Published by the University of Novi Sad, Faculty of Technical Sciences, Department of Graphic Engi-
neering and Design. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution license 3.0 Serbia (http://creativecommons.org/licenses/by/3.0/rs/).

https://dl.acm.org/doi/10.1145/1857907.1857908
https://link.springer.com/article/10.1007/s003710050084
https://dl.acm.org/doi/10.1109/MCG.1986.276672
https://dl.acm.org/doi/10.1145/508352.508354
https://dl.acm.org/doi/10.1145/344779.344829
https://casual-effects.com/research/McGuire2005Parallax/index.html
https://casual-effects.com/research/McGuire2005Parallax/index.html
https://casual-effects.com/research/McGuire2005Parallax/index.html
https://dl.acm.org/doi/10.1145/344779.344947
https://ieeexplore.ieee.org/abstract/document/8354053
https://journals.agh.edu.pl/csci/article/view/3337/2635
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.1020129
https://dl.acm.org/doi/10.1145/258734.258873
https://dl.acm.org/doi/10.1145/1111411.1111422
https://dl.acm.org/doi/10.1145/1186822.1073292
https://www.semanticscholar.org/paper/Revolution-mapping-with-bump-mapping-support-Ragragui-Chahdi/7277aba4988bc559a6cf04617e91f920c78c3875
https://academic.oup.com/jcde/article/7/1/30/5809440
https://dl.acm.org/doi/proceedings/10.1145/1185657?tocHeading=heading25
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Parallax+Mapping+with+Offset+Limiting+:+A+Per+?+Pixel+Approximation+of+Uneven+Surfaces#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Parallax+Mapping+with+Offset+Limiting+:+A+Per+?+Pixel+Approximation+of+Uneven+Surfaces#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Parallax+Mapping+with+Offset+Limiting+:+A+Per+?+Pixel+Approximation+of+Uneven+Surfaces#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Parallax+Mapping+with+Offset+Limiting+:+A+Per+?+Pixel+Approximation+of+Uneven+Surfaces#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Parallax+Mapping+with+Offset+Limiting+:+A+Per+?+Pixel+Approximation+of+Uneven+Surfaces#0

