
Journal of Graphic Engineering and Design, Volume 16 (1), 2025. 51

Introduction

Based on traditional methods, real-time rendering still
suffers from the number of vertices and polygons that
the graphics cards need to handle, which affects the
interactivity of rendering complex 3D scenes.

Furthermore, the appearance of the microreliefs con-
stituted a problem in real-time rendering due to their
diminutive size to be created by a mesh that requires a
series of decomposition into a set of triangles, moreover,
they represent a lot of details which make them difficult
to simulate for shading functions and this because of

Anouar Ragragui 1
Adnane Ouazzani Chahdi 2
Amina Arbah 2
Hicham El Moubtahij 3
Akram Halli 4
Khalid Satori 2

¹ Abdelmalek Essaadi University,
National School of Applied Sciences
Al Hoceima (ENSAH), SOVIA
Research Team, Tetouan, Morocco
² Sidi Mohamed Ben Abdellah
University, Faculty of Science Dhar El
Mahraz, LISAC Laboratory, Fez, Morocco
3 Ibn Zohr University, High School of
Technology, Agadir, Morocco
4 Moulay Ismail University, Faculty of
Law, Economics, and Social Sciences
(FSJES), OMEGA-LERES Laboratory,
Meknes, Morocco

Corresponding author:
Anouar Ragragui
e-mail:
a.ragragui@uae.ac.ma

First received: 21.11.2023.
Revised: 23.4.2024.
Accepted: 21.6.2024.

ABSTRACT

Nowadays, 3D computer graphics are firmly anchored in our daily lives,
extending across a multitude of distinct fields. Although each field follows its
specific objectives, two major objectives are taken into consideration: realism
and rendering speed. This is why image-based rendering (IBMR) techniques,
such as revolution mapping, are gaining interest. Revolution-bump mapping
is an image-based rendering that allows the creation of 3D objects in
their entirety and without using polygonal meshes. The objective of the
study presented in this paper is to improve the revolution-bump mapping
technique as well as its extensions while ensuring that the application of
textures on revolved surfaces is realized adequately. This development
will allow the creation of pre-existing revolve models, while maintaining
the essential rendering speed requirements for real-time rendering.

KEY WORDS
Computer graphics, Revolution mapping, Image-based modeling and
rendering, Bump mapping, Ray-tracing

Revolution-bump mapping with
texture function adjustment
according to the geometry
of the revolved object

Original scientific paper http://doi.org/10.24867/JGED-2025-1-051

https://orcid.org/0000-0001-5290-4130
https://orcid.org/0000-0003-4463-5916
https://orcid.org/0009-0003-7519-4065
https://orcid.org/0000-0003-3486-4950
https://orcid.org/0000-0002-5188-4032
https://orcid.org/0000-0001-6055-4169
http://doi.org/10.24867/JGED-2025-1-051

visual poverty. So, it is often necessary to make sacrifices
by decreasing the number of polygons constituting the
3D scene so that it can maintain a reasonable display
rate and consequently reduce the rendering quality.

The reason that pushed us to move towards alternative
methods to polygonal mesh, namely image-based ren-
dering and more precisely revolution mapping because
it uses only a single RGBA texture to create 3D objects.

Revolution-bump mapping is a technique that combines
two different approaches: revolution mapping and bump
mapping (Ragragui et al., 2018). Revolution mapping is
based on the use of a binary form stored in a 2D tex-
ture, which we call a shape map. During the rendering
stage, the model to be revolved is represented by only
the pixels with zero values. This method is based on
the ray tracing algorithm to find the intersection point
of the viewing ray and the revolved surface by using an
empty space which is calculated using the Euclidean
Distance Transform (EDT) computed from the binary
form (Danielsson, 1980; Fabbri et al., 2008; Gustavson
& Strand, 2011). On the other hand, bump mapping
consists of adding more realism to 3D objects by sim-
ulating micro-reliefs during the shading phase. It uses
a displacement map to disrupt the normals associated
with the 3D surface to produce a microrelief effect.

Unfortunately, revolution mapping faces a recurring
problem of poor texturing of revolved surfaces. Indeed,
it has gaps in the ability to adequately apply textures
to these surfaces due to the use of inappropriate
texturing functions. This article aims to present an
innovative solution that relies on the configuration of
the revolution object to select the appropriate textur-
ing function. Indeed, the two types of textures used
for the revolved object, namely the color texture and
the displacement map, prove insufficient to ensure
optimal texturing of the surface of the 3D object,
whether in terms of colorimetry or microreliefs.

As can be seen in Figure 1, the direct application of
the texturing function presents problems in adapt-
ing texture to the shape of 3D objects. Looking at
the object at the top of Figure 1a, it can be seen that
spherical projection does not guarantee appropriate
texturing, whereas the object at the bottom is ade-
quately textured. On the other hand, in Figure 1b, the
cylindrical projection guarantees perfect texturing
of the object at the top, but the object at the bot-
tom does not benefit from satisfactory texturing.

In this study, we propose an approach that uses the
specific geometry of the revolved object to guide the
choice of texturing method. This approach aims to
solve the problems inherent in texturing the surfaces
of a revolution, considering the coloring and rendering
requirements of microreliefs.

By determining the texturing method based on the
shape and characteristics of the revolved object, we
aim to overcome the limitations of revolution bump
mapping and enable the creation of 3D renderings
that respect both visual realism and detail accuracy.

Related Work

One of the most popular techniques for real-time ren-
dering is texture mapping. It allows to add realism to a
computer-generated 3D object (Catmull, 1974; Heckbert,
1986; Blinn & Newell, 1976). Another use of texture map-
ping is presented by the authors Lim et al. (2023) and
Kao, Chen & Ueng (2023). It is the oldest and simplest
of the image-based techniques. Its goal is to determine
the relationship between texture elements defined in 2D
space and surfaces defined in 3D space. Bump mapping
was introduced by Blinn (1978). This method reproduces
microrelief on 3D surfaces without changing their
geometry. A displacement value is calculated based
on the partial derivatives of the applied texture, which
is used to perturb the normal of a given surface.

Parallax mapping (Kaneko et al., 2001) is a technique
similar to bump mapping, but based on different prin-
ciples. It allows to significantly increase the detail of
a textured surface, even if this detail is an illusion.
It aims at displacing the texture coordinates to find
approximately the intersection at which the height
map's relief and the viewing ray, given in tangent space,
cross. Further improvements are presented by the
authors Welsh (2004) and McGuire & McGuire (2005).

To add detail, the height map's values are used in the
displacement mapping (Cook, 1984; Lee, Moreton &
Hoppe, 2000). It was able to hide almost all the defects
of bump mapping by completely changing the sur-
face geometry instead of just perturbing the normals.
This approach is based on dividing the 3D surface into
sub-polygons and displacing them along their normals
using distances extracted from a displacement map.
The method used is different from that described in the
papers by Gumhold & Hüttner (1999) and Doggett &
Hirche (2000), which significantly modified the geom-
etry to reduce the number of triangles produced
as a function of viewpoint. To reduce the polygon
generation, they proposed the adoption of an adap-
tive subdivision based on the displacement map.

View-dependent displacement mapping is a technique
suitable for real-time rendering. It relies on preprocess-
ing to compute a texture (Wang et al., 2003). The goal
is to move the surface by performing calculations at the
texel level, thus optimizing performance. A significant
improvement of this method is presented in Wang &
Dana (2005), where the use of a compression method is
introduced to meet high memory requirements.

52

Journal of Graphic Engineering and Design, Volume 16 (1), 2025. 53

Another interesting extension is discussed in Wang et
al. (2004), which aims to generalize the displacement
map approach under the name "GDM" (Generalized
Displacement Maps).

 » Figure 1: Illustration of texturing function problem of
revolved objects. (a) The spherical projection (b) The
cylindrical projection

The ray tracing method aims to use the viewing ray
to find the intersection point, sometimes referred to
as linear search. It has only been used in the context
of parallax mapping in the research by McGuire &
McGuire (2005), and as a first step in the the papers
of the authors Policarpo, Oliveira & Comba (2005) and
Tatarchuk & Natalya (2006). Unfortunately, relying solely
on linear search results in stair-step artifacts, unless very
narrow intervals are used. This issue was resolved by
the method suggested in Tatarchuk & Natalya (2006),
which involved combining a secant step with a fine
linear search (Wen, 2023; Yang & Jia, 2023; Wu et al.,
2024; Zellmann et al., 2022). Unlike ray tracing, which
follows light rays deterministically, path tracing uses
a probabilistic approach to calculate light paths in the
scene; This is a technique that uses the principle of ray
tracing but in a different way (Chen, Chen & Yu, 2023;
Wald & Parker, 2022; Wald, Jaroš & Zellmann, 2023).

The combination of secant and linear searches offers
a solution for improving ray tracing (Yerex & Jager-
sand, 2004). A further improvement to this technique
is introduced in Risser, Shah & Pattanaik (2006),
where the secant method is repeated several times
to accurately determine the intersection point.

The key advantage of per-pixel displacement mapping
is its ability to enhance the reality of surfaces without
adding complexity to the mesh structure, making it an
exciting evolution of the per-vertex displacement map-
ping method previously described in Patterson, Hoggar
& Logie (1991). This technique overcomes the bottleneck
caused by the significant number of graphics primitives
sent to the graphics processor as part of vertex displace-
ment mapping.

Per-pixel displacement mapping relies on ray-tracing
technology to accurately determine the texture coo-
rdinates for each pixel with respect to the displace-
ment map.

Surfaces of revolution are commonly used in various
sectors such as engineering, architecture and 3D mod-
elling, as they can be used to generate refined and com-
plex shapes (Li & Li, 2022). Several techniques are based
on this approach, including extrusion mapping and
revolution mapping, as discussed in Halli et al. (2009)
and Halli et al. (2010).

Both methods use shape maps to create 3D surfaces. To
increase the realism of the generated surfaces, various
improvements have been made to both approaches, as
shown in Ragragui et al. (2020), Ragragui et al. (2018),
Ragragui et al. (2022) and Chahdi et al. (2021b).

To quickly converge to the intersection point, sphere
tracing uses spheres to encode the empty space
(Hart, 1996). It was subsequently adapted for the
intersection point by using ray-tracing and the
height map (Donnelly, 2005). Further improve-
ments were presented in Fabbri et al. (2008) and
Gustavson & Strand (2011), which aim at perfect-
ing the algorithm for calculating distance maps.

Cone tracing determines the empty space around each
pixel of the depth map in the pre-processing stage as an
open cone at the top, and then stores its ratio in a cone
map. During the rendering stage, the cone map is used
to accelerate the convergence to the intersection point
of the viewing ray and the surface, so that there is no
chance of missing it. This approach comes in two flavors:
a relaxed version (Policarpo & Oliveira, 2007) and a
conservative version (Dummer, 2006). Both variants of
cone mapping have been extended in Halli et al. (2008)
and Chahdi et al. (2021a).

Due to its ability to speed up convergence to the
point where the viewing ray intersects with the
relief, relief mapping is one of the most popular
methods for real-time rendering (Policarpo, Olivei-
ra & Comba, 2005; Policarpo & Oliveira, 2006;
Chahdi et al., 2018). This technique is an evolu-
tion of the relief texture mapping method intro-
duced in Oliveira, Bishop & McAllister (2000).

Shadow mapping is a widely used technique that
provides satisfactory results and is characterized
by the fact that is relatively easy to implement,
as suggested in Wang et al. (2003), Policarpo,
Oliveira & Comba (2005) and Wang et al. (2017).

The idea behind shadow mapping is quite simple: it is
based on the principle that the scene is illuminated
according to the viewpoint of the light source.

(a) (b)

54

A technique for interactive deformation and collision
with reliefs was presented in Nykl, Mourning &
Chelberg (2014). This technique can be seamlessly
combined with existing relief rendering techniques,
including parallax mapping, relief mapping, as well
as applications using displacement mapping.

Bump mapping

Rendering microrelief was one of the main issues, partic-
ularly in real-time rendering. Blinn proposed bump map-
ping as a microrelief simulation technique (Blinn, 1978).
As shown in Figure 2, this method involves adjusting
the 3D surface's normals to create the appearance of
microrelief. The principle is quite simple: it consists of
displacing the normals to a surface to induce variations
in shading, thus giving the illusion of relief without mod-
ifying the basic geometry of the 3D object. More con-
cretely, it is based on the partial derivatives computed
from a microrelief saved as a monochrome image known
as a height map, which entails displacing the normal
interpolated during the rasterization stage. Disturbed
normals are calculated using the following formula:

By using the height map H(u, v) saved as a 2D grayscale
image, we can calculate the disturbed normal
N'(u,v) for each pixel by using the formula (1).

 » Figure 2: Comparison of a teapot rendered using
texture mapping (top) and bump mapping (bottom)

Revolution-bump mapping

Revolution mapping is a method for generating highly
convincing 3D objects without resorting to polygonal
meshes and presenting them interactively. The underlying
concept is to use a shape map, which holds the geomet-
ric information of the basic form, to build virtual surfaces.

Figure 3 illustrates a geometric representation of the
base form's revolution, positioned on a box (shape box),
and highlights the process of searching the interse-
ction point.

There are four essential components in the revolution
mapping algorithm. Firstly, the shape map and dis-
placement map are essential for precisely defining the
geometry and displacement variations (microreliefs)
associated with the basic form. Secondly, the ray-tracing
algorithm plays a crucial role in visual creation by calcu-
lating the interactions between the viewing ray and the
revolution surface. The last other components are the
shading process that adds lighting and shadow effects,
contributing to the realism of the final 3D object, and
the shape box that provides a reference element for
positioning the basic form and managing intersections.

Shape and displacement map

These two maps are obtained during the pre-processing
phase. They contain the essential information for gener-
ating the surface of revolution (shape map) and for
adding realism (displacement map).

Shape map: The data for the revolution mapping algo-
rithm is contained in this map, which is an RGBA texture
(Figure 4e). The alpha channel saves a binary image that
represents the basic form (Figure 4a). The distance map
is kept in the blue channel (Figure 4b).

Finally, the red and green channels contain the
gradient values along x and y, which are used to
calculate the normal coordinates (Figure 4c,d).

 » Figure 3: The shape of a piece of jewelry placed at the
center of a box and the process of finding the point of
intersection pint

Displacement map: the partial derivatives ∂H(u,v)
are calculated as a function of u and v from the
height map H(u,v) (Figure 5a), then saved in the red
and green channels (Figure 5b and c) of a 2D tex-
ture called the displacement map (Figure 5d).

(1)

˿

Journal of Graphic Engineering and Design, Volume 16 (1), 2025. 55

Before starting the rendering phase, the two maps; the
shape and the displacement map; are transferred to the
graphics card.

 » Figure 4: Example of different data. (a) The alpha
channel. (b) The blue channel. (c) Red and (d) green
channels. (e) Shape map stores all this data

 » Figure 5: Example of displacement map ∂H(u,v) for
which we store the partial derivatives of H(u,v)

Ray tracing

Finding the intersection point is the first step in the
revolution mapping algorithm. For this, the technique is

based on ray tracing, whose goal is to use the distances
d recorded in the shape map to locate the intersec-
tion of the viewing ray and the revolved surface. The
current pixel has coordinates (u,v), and the start point
p0 of the search has coordinates (x0, y0, z0)=(u,v,0).
The normalized viewing ray is determined from the
viewing point to the starting point p0. The blue chan-
nel (figure 4b) is used, at each point pi, to extract the
distance di. The point pi+1 is calculated by the formula:

 » Figure 6: At the intersection point pint, the process for
computing the tangent and normal vectors

To access the shape map and retrieve the distance
di between the current point and the form, the revolu-
tion algorithm uses the coordinates (si,ti) (Figure 6).
Using the equation below:

Shading

For each intersection point found by the ray tracing
algorithm, the next step is to identify the tangent
space (TBN). This space will enable shading of the
pixel correctly using the following equation:

With

According to Figure 6, the normal is constituted by
the components Gintx and Ginty of the gradient unit:

The tangent can be determined by the
following equation:

Basic shape
(a)

Height map
H(u,v)

Red channel

Displacement map

Green channel

The x and y values of normal
(c) (d)

Distance map
(b)

Shape map
(e)

(2)

(3)

(4)

(5)

(6)

56

The vector Bint is calculated by using the formula:

Shape box

Applying the shape map to a simple polygonal mesh
structure, such as a plane as shown in Figure 7a, will not
completely render the 3D object created by revolution
mapping. This is because the geometry is only visible
from the textured surface of the polygons. To create and
display complete 3D objects regardless of the viewing
ray direction, this technique implements a solution that
consists of enveloping the virtual volume in revolution
with a shell space made of a single box. This envelope is
called a shape box (Figure 7b).

 » Figure 7: Highlighting the problem associated with
applying the shape map to a simple plan (a)
This problem is solved by using a shape box (b)

Texturing function

In the context of our contribution, our goal is closely
related to the precise determination of the color of a
revolved object.

To achieve this, we rely on two fundamental elements:
the color map and the displacement map. These ele-
ments are crucial for each intersection point pint.

The process we've developed consists of several key
steps. First, it is imperative to accurately calculate the
texture coordinates, which we denote by (ξint, ηint).
These coordinates are of paramount importance
because they are used to access the information
contained in the color map and the displacement map.

These maps meticulously wrap around the revolved
object (Figure 8).

 » Figure 8: To properly texture the revolved object
(below), we need to apply the color map to the object
and the partial derivative map, using the appropriate
projection for the object

By accessing the color map, we can extract the
information needed to determine the specific color of
each intersection point. In addition, by consulting the
displacement map, we have the elements we need to
evaluate displacement variations as a function of posi-
tion. This is crucial for our purpose, as it allows us to
retrieve the desired values related to the color and
displacement properties of the 3D object.

Direct use of the coordinates (xint,yint,zin) allows only
simple mapping with planar projection, which is well
suited for a flat surface, but not for a revolved surface.
The latter requires cylindrical or spherical projection,
as shown in Figure 9. This distinction becomes clear
when we look at Figure 9, where we can easily see
that the use of a spherical or cylindrical projection
must be adjusted according to the specific geometry
of the revolved object. This adjustment is crucial to
avoid visual errors, which are marked in Figure 9.

This problem also arises when revolution mapping is
extended to variations such as revolution-bump map-
ping, extended, beveled, or chamfered mapping. Our
fundamental goal is to give revolved objects a realistic
texture that reflects their shape and appearance. To
achieve this, we propose a two-step methodology. In
the pre-processing stage, we propose to associate the
appropriate projection type directly with the revolved
object by integrating it with the name of the shape map.
This approach greatly simplifies the management of dif-
ferent projections and ensures that each object receives
the correct texture according to its unique geometry.

However, the key step is the rendering phase. This is
where the information previously encoded in the name
of the shape map comes into play.

(7)

(8)

(a)

(b)

˿

Journal of Graphic Engineering and Design, Volume 16 (1), 2025. 57

During the rendering stage, we extract this information
to select the projection that perfectly matches the
revolved object that we want to render.

By doing so, we succeed in transcending the constraints
of simple projections and offering realistic textures, thus
contributing to the visual quality and verisimilitude of
revolution-generated objects, as shown in Figure 9.

To accurately ascertain the texture coordinates, and
given that the texturing process must be applied to each
replica, it is imperative to consider only the fractional
portion of the intersection point coordinates:

Cylindrical projection

For cylindrical projection mapping, we use the cylindri-
cal coordinates of the intersection point pint, expressed
with respect to an axis centered on the shape box:

With:

We deduce the value of φ:

The texture coordinate ηint is equal to z'int.
As for ξint, it changes from 0 to 1 when φ
changes from π to -π. We then have:

For revolution-bump mapping, use (Ox,Oy)
instead of (0.5,0.5) if the axis of revolu-
tion is not centered on the shape box.

Spherical projection

Based on the intersection point's spherical coordinates,
the spherical projection mapping is produced, expressed
with respect to a reference frame placed at the centre
of the shape box.

With:

We deduce the values of φ and θ:

ξint varies in [0,1] when φ goes from π to π, and ηint int
varies in [0,1] when θ goes from π to 0. Then we have:

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

 » Figure 9: Rendering of the various 3D objects created in real-time by revolution-bump mapping, using spherical
projection (left) and cylindrical projection (right). The red outline shows the texturing defects on the revolution surfaces

58

Results and discussion

In the pre-processing stage, we implemented the
algorithms using the C++ language to produce the
displacement map and the shape map. During the
rendering stage, we exploited OpenGL and its
parallel processing language, GLSL, to create the
vertex and fragment shaders.

During the rendering stage, in addition to the coordi-
nates associated with the shape box, the two maps creat-
ed during the preprocessing stage are transmitted to the
graphics card. The analyses and illustrations were exe-
cuted using an 8CPU Intel Core i7-11657G7 architecture
at 2.80GHz, equipped with 8GB of RAM, and a GeForce
MX330 graphics card with 4GB of dedicated memory.
In this paper, the images provided were taken during
a test in which the box occupies a significant part
of the screen. We would like to note that the total
number of iterations to find the intersection is 20,
except for the beveled revolution mapping (35 iter-
ations, of which 10 are for binary refinement), as
well as the revolution mapping with chamfer (20
iterations, of which 35 are for the chamfer phase).

As shown in Figure 10, our approach correctly textures
objects created by the revolution-bump mapping
extensions: outward, beveled, and chamfered rev-
olution-bump mapping. Our contribution perfectly
adapts to the geometry of the rendered object.

Figure 11 shows additional examples of well-textured
surfaces, using either cylindrical or spherical projection,
depending on the object's geometry. These 3D objects
are generated with revolution-bump mapping, using
various shape and displacement maps. We can empha-
size how many different kinds of objects can be made
with this technique, as well as how many graphical
primitives (polygons and vertices) can be avoided.

Figure 12 shows 3D objects rendered using revolution
bump mapping with spherical projection (Figure 12a)
and cylindrical projection (Figure 12b) by applying
repetition to the texture and displacement map.

It should be noted that the improvement presented in
this paper also applies to the other revolution mapping
techniques, i.e. revolution with mirror and repetition
(see Figure 13).

e = 0.25 b = 0.4 b = 0.6 c = 0.6

 » Figure 10: Extension of revolution-bump mapping. (a) Outward, (b) Beveled, and (c) Chamfered revolution-bump
mapping. For each method, the spherical projection is on the left and the cylindrical one is on the right

 » Figure 11: Various objects are rendered using revolution-bump mapping by adjusting the texturing function to the
rendered surface. (Top) Cylindrical projection. (Bottom) Spherical projection

Journal of Graphic Engineering and Design, Volume 16 (1), 2025. 59

 » Figure 12: Various objects are rendered using revolu-
tion-bump mapping with adjustment of the texturing
function and application of repetition to the texture
and displacement map. (a) Spherical projection. (b)
Cylindrical projection

 » Figure 13: Various objects are rendered using revolu-
tion-bump mapping with adjustment of the texturing
function and application of repetition to the texture
and displacement map

Note that our contribution has no impact on rendering
speed. There is not much difference between revolu-
tion-bump mapping and revolution-bump mapping with
texture function adjustment according to the geometry
of the revolved object. Our improvement fully preserves
all the features and properties of revolution-bump map-
ping and its extensions. In addition, we found that this
improvement has no impact on the complexity of the
raytracing algorithm since the revolution mapping algo-
rithms always have linear complexity in O(n). As a result,
the complexity of the algorithm is always linear. It's
also worth noting that the memory used by the shape
map does not exceed 10 MB, while the partial deriva-
tives map does not exceed 4 MB. This ensures that the
memory of the graphics card is not saturated, thus guar-
anteeing the continuous interactivity of the 3D scene.

Conclusion

This research presents an enhancement of revolu-
tion-bump mapping and its extensions. Our contribution
makes it possible to adjust the texture of the revolution
surface in real-time while enriching the visual quality of

the rendered objects. This improvement avoids over-
loading the graphics pipeline that can result from pro-
cessing a large number of polygons and vertices.
It focuses on determining the displacement and color
values at each intersection point using the displacement
map and color map.

This requires a careful determination of the texture
coordinates and an adaptation of the texturing function
to the geometry of the revolved object. for this, we have
included the type of projection in the name of the shape
map which will be appropriate to the object to be gener-
ated during the rendering phase. Our contribution relies
only on the use of two different textures, a box, and the
tangent space at each intersection point.

The first texture, or shape map, is used to generate
the revolved surface, and the second texture, or dis-
placement map, is used to integrate the microrelief
effects. However, in the rendering stage, we adapt the
rendering of the 3D object by using the appropriate
texturing function. The improvements we propose are
in line with the two goals we set out in the introduction:
to meet rendering speed requirements and to present
revolution models in a particularly convincing way.

Funding
The research did not receive any specific grant from
funding agencies in the public, commercial, or
not-for-profit sectors.

References

Blinn, J. F. & Newell, M. E. (1976) Texture and reflection in
computer generated images. ACM SIGGRAPH
Computer Graphics. 10 (2), 266–266. Avail-
able from: doi: 10.1145/965143.563322

Blinn, J. F. (1978) Simulation of wrinkled surfaces. ACM
SIGGRAPH Computer Graphics. 12 (3), 286–292.
Available from : doi: 10.1145/965139.507101

Catmull, E. E. (1974) A subdivision algorithm
for computer display of curved surfaces.
PhD thesis. The University of Utah.

Chahdi, A. O., Ragragui, A., Halli, A. & Satori, K.
(2018) Dynamic relief mapping1. In: 2018 Inter-
national Conference on Intelligent Systems
and Computer Vision, ISCV, 2-4 April 2018, Fez,
Morocco. Piscataway, IEEE. pp. 1-6. Available
from: doi: 10.1109/ISACV.2018.8354053

Chahdi, A. O., Ragragui, A., Halli, A. & Satori, K.
(2021a) Per-pixel displacement mapping using
cone tracing with correct silhouette. Journal of
Graphic Engineering and Design. 12 (4), 39–61.
Available from: doi: 10.24867/JGED-2021-4-039

Chahdi, A. O., Ragragui, A., Halli, A. & Satori, K. (2021b)
Per-Pixel Extrusion Mapping With Correct Silhouette.

(a) (b)

https://dl.acm.org/doi/10.1145/965143.563322
https://dl.acm.org/doi/10.1145/965139.507101
https://ieeexplore.ieee.org/abstract/document/8354053
https://jged.uns.ac.rs/index.php/jged/article/view/450

60

Computer Science. 22 (3), 407–432. Available
from: doi: 10.7494/csci.2021.22.3.3337

Chen, J., Chen, L. & Yu, Z. (2023) Accelerating path trac-
ing rendering with Multi-GPU in Blender cycles. In:
25th International Conference on Advanced Communi-
cation Technology, ICACT, 19-22 February 2023,
Pyeongchang, Republic of Korea. Piscatawy,
IEEE. pp. 314-318. Available from: doi:
10.23919/ICACT56868.2023.10079514

Cook, R. L. (1984) Shade trees. ACM SIGGRAPH
Computer Graphics. 18 (3), 223-231. Avail-
able from: doi: 10.1145/964965.808602

Danielsson, P. E. (1980) Euclidean distance mapping.
Computer Graphics and Image Processing.
14 (3), 227-248. Available from: doi:
10.1016/0146-664X(80)90054-4

Doggett, M. & Hirche, J. (2000) Adaptive view
dependent tessellation of displacement maps. In:
Proceedings of the SIGGRAPH/Eurographics Work-
shop on Graphics Hardware, HWWS’00, 21-22
August 2000, Interlaken, Switzerland. New York,
Association for Computing Machinery. pp. 59-66.
Available from: doi: 10.1145/346876.348220

Donnelly, W. (2005) Per-Pixel Displacement Mapping
with Distance Functions. In: Pharr, M. and
Randima, F. (eds.) GPU Gems 2. Boston, Addi-
son-Wesley Professional, pp. 123-137.

Dummer, J. (2006) Cone step mapping: An iterative
ray-heightfield intersection algorithm. Available from:
https://www.scribd.com/document/57896129/Cone-
Step-Mapping [Accessed 20th September 2024].

Fabbri, R., Costa, L. D. F., Torelli, J. C. & Bruno, O. M.
(2008) 2D Euclidean distance transform algorithms.
ACM Computing Surveys. 40 (1), 1–44. Avail-
able from: doi: 10.1145/1322432.1322434

Gumhold, S. & Hüttner, T. (1999) Multiresolution
rendering with displacement mapping. In: Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, HWWS’99, 8-9
August 1999, Los Angeles, California. New York,
Association for Computing Machinery. pp. 55–66.
Available from: doi: 10.1145/311534.311578

Gustavson, S. & Strand, R. (2011) Anti-aliased
Euclidean distance transform. Pattern Rec-
ognition Letters. 32 (2), 252–257. Available
from: doi: 10.1016/j.patrec.2010.08.010

Halli, A., Saaidi, A., Satori, K. & Tairi, H. (2008) Per-Pixel
Displacement Mapping Using Cone Tracing. Interna-
tional Review on Computers and Software. 3 (3), 1–11.

Halli, A., Saaidi, A., Satori, K. & Tairi, H. (2009) Per-Pixel
Extrusion Mapping. International Journal of Computer
Science and Network Security. 9 (3), 118-124.

Halli, A., Saaidi, A., Satori, K. & Tairi, H. (2010) Extrusion
and revolution mapping. ACM Transactions on
Graphics. 29 (5), 1–14. Available from: doi:
10.1145/1857907.1857908

Hart, J. C. (1996) Sphere tracing: A geometric method for
the antialiased ray tracing of implicit surfaces.

Visual Computer. 12 (10), 527–545. Available
from: doi: 10.1007/s003710050084

Heckbert, P. S. (1986) Survey of Texture Mapping. IEEE
Computer Graphics and Applications. 6 (11), 56–67.
Available from: doi: 10.1109/MCG.1986.276672

Kaneko, T., Takahei, T., Inami, M., Kawakami, N., Yan-
agida, Y., Maeda, T. & Tachi, S. (2001) Detailed
Shape Representation with Parallax Mapping. In:
Proceedings of the 11th International Conference
on Artificial Reality and Telexistence, ICAT 2001,
5-7 December 2001, Tokyo, Japan. pp. 205-208.

Kao, Y. C., Chen, W. H. & Ueng, S. K. (2023) Texture
Mapping for Voxel Models Using SOM. In: Proceedings
- 2023 6th International Symposium on Computer,
Consumer and Control, IS3C, 30 June – 3 July 2023,
Taichung, Taiwan. Piscataway, IEEE. pp. 99-102.
Available from: doi: 10.1109/IS3C57901.2023.00035

Lee, A., Moreton, H. & Hoppe, H. (2000) Displaced
subdivision surfaces. In: Proceedings of the 27th
annual conference on Computer graphics and
interactive techniques, SIGGRAPH’00, 23-28 July
2000, New Orleans, Louisiana. New York, ACM
Press/Addison-Wesley Publishing. pp 85-94.
Available from: doi: 10.1145/344779.344829

Li, H. & Li, M. (2022) Constant Winding Angle Curve on
Revolution Surface and its Application.
CAD Computer Aided Design. 144. Available from:
doi: 10.1016/j.cad.2021.103160

Lim, A. X. W., Ng, L. H. X., Griffin, C., Kryer, N. &
Baghernezhad, F. (2023) Reverse Projection: Real-
Time Local Space Texture Mapping. In: Proceed-
ings – ACM SIGGRAPH 2023 Posters, SIGGRAPH’23,
6-10 August 2023, Los Angeles, California. New
York, Association for Computing Machinery. Avail-
able from: doi: 10.1145/3588028.3603653

McGuire, M. & McGuire, M. (2005) Steep Parallax
Mapping. Available from: https://casual-effects.
com/research/McGuire2005Parallax/index.
html [Accessed 20th September 2024].

Nykl, S., Mourning, C. & Chelberg, D. (2014) Interactive
mesostructures with volumetric collisions. IEEE Trans-
actions on Visualization and Computer Graphics.
20 (7), 970–982. Available from: doi:
10.1109/TVCG.2014.2317700

Oliveira, M. M., Bishop, G. & McAllister, D. (2000)
Relief texture mapping. In: Proceedings of the
27th annual conference on Computer graphics and
interactive techniques, SIGGRAPH’00, 23-28 July
2000, New Orleans, Louisiana. New York, ACM
Press/Addison-Wesley Publishing. pp. 359–368.
Available from: doi: 10.1145/344779.344947

Patterson, J. W., Hoggar, S. G. & Logie, J. R. (1991) Inverse
Displacement Mapping. Computer Graphics
Forum. 10 (2), 129–139. Available from:
doi: 10.1111/1467-8659.1020129

Policarpo, F. & Oliveira, M. M. (2006) Relief map-
ping of non-height-field surface details. In: Pro-
ceedings of the 2006 symposium on Interactive

https://journals.agh.edu.pl/csci/article/view/3337
https://ieeexplore.ieee.org/document/10079514
https://dl.acm.org/doi/10.1145/964965.808602
https://www.sciencedirect.com/science/article/abs/pii/0146664X80900544
https://dl.acm.org/doi/10.1145/346876.348220
https://www.scribd.com/document/57896129/Cone-Step-Mapping
https://www.scribd.com/document/57896129/Cone-Step-Mapping
https://dl.acm.org/doi/10.1145/1322432.1322434
https://dl.acm.org/doi/10.1145/311534.311578
https://www.sciencedirect.com/science/article/abs/pii/S0167865510002953
https://dl.acm.org/doi/10.1145/1857907.1857908
https://link.springer.com/article/10.1007/s003710050084
https://ieeexplore.ieee.org/document/4056764
https://ieeexplore.ieee.org/document/10219447
https://dl.acm.org/doi/10.1145/344779.344829
https://www.sciencedirect.com/science/article/abs/pii/S0010448521001664
https://dl.acm.org/doi/10.1145/3588028.3603653
https://casual-effects.com/research/McGuire2005Parallax/index.html
https://casual-effects.com/research/McGuire2005Parallax/index.html
https://casual-effects.com/research/McGuire2005Parallax/index.html
https://pubmed.ncbi.nlm.nih.gov/26357354/
https://dl.acm.org/doi/10.1145/344779.344947
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.1020129

Journal of Graphic Engineering and Design, Volume 16 (1), 2025. 61

3D graphics and games, I3D’06, 14-17 March
2006, Redwood City, California. New York, Asso-
ciation for Computing Machinery. pp. 55-62.
Available from: doi: 10.1145/1111411.1111422

Policarpo, F. & Oliveira, M. M. (2007) Relaxed cone step-
ping for relief mapping. In: Nguyen, H. (ed.) GPU Gems
3. Boston, Addison-Wesley Professional, pp. 409–428.

Policarpo, F., Oliveira, M. M. & Comba, J. L. D. (2005)
Real-time relief mapping on arbitrary polygonal sur-
faces. In: Gross, M. (ed.) ACM SIGGRAPH 2005 Papers,
SIGGRAPH’05, 31 July – 4 August 2005, Los Angeles,
California. New York, Association for Computing
Machinery. p. 935. Available from: doi:
10.1145/1186822.1073292

Ragragui, A., Ouazzani Chahdi, A., Halli, A. & Satori, K.
(2018) Revolution mapping with bump mapping
support. Graphical Models. 100, 1–11. Available from:
doi: 10.1016/j.gmod.2018.09.001

Ragragui, A., Ouazzani Chahdi, A., Halli, A. & Satori, K.
(2020) Image-based extrusion with realistic
surface wrinkles. Journal of Computational
Design and Engineering. 7 (1), 30–43. Avail-
able from: doi: 10.1093/jcde/qwaa004

Ragragui, A., Ouazzani Chahdi, A., Halli, A., Satori, K. &
El Moubtahij, H. (2022) The extensions of revolu-
tion-bump mapping. Journal of Graphic Engineering
and Design. 13 (1), 21–31. Available from: doi:
10.24867/JGED-2022-1-021

Risser, E., Shah, M. A. & Pattanaik, S. (2006) Interval
Mapping. Available from: https://www.semantic-
scholar.org/paper/Interval-Mapping-Risser-Shah/
d16d9da41ec53b604e15976b0615ad3993c67ed-
c#citing-papers [Accessed 20th September 2024].

Tatarchuk, N. & Natalya (2006) Practical parallax
occlusion mapping with approximate soft shad-
ows for detailed surface rendering. In: ACM SIG-
GRAPH 2006 Courses, SIGGRAPH’06, 30 July – 3
August 2006, Boston, Massachusetts. New York,
Association for Computing Machinery. pp. 81-112.
Available from: doi: 10.1145/1185657.1185830

Wald, I. & Parker, S. G. (2022) Data Parallel Path Tracing
with Object Hierarchies. Proceedings of the ACM
on Computer Graphics and Interactive Techniques.
5 (3). Available from: doi: 10.1145/3543861

Wald, I., Jaroš, M. & Zellmann, S. (2023) Data Par-
allel Multi-GPU Path Tracing using Ray Queue
Cycling. Computer Graphics Forum. 42 (8).
Available from: doi: 10.1111/CGF.14873

Wang, J. & Dana, K. J. (2005) Compression of View
Dependent Displacement Maps. In: Chantler, M. and
Drbohlav, O. (eds.) Proceedings of the 4th Interna-
tional Workshop on Texture Analysis and
Synthesis, Texture 2005, 21 October
2005, Beijing, China. pp. 143–148.

Wang, L., Wang, X., Tong, X., Lin, S., Hu, S., Guo, B. &
Shum, H.-Y. (2003) View-dependent displacement
mapping. In: ACM SIGGRAPH 2003 Papers, SIG-
GRAPH’03, 27-31 July 2003, San Diego, California.

New York, Association for Computing Machinery. pp.
334-339. Available from: doi: 10.1145/1201775.882272

Wang, L., Zhang, W., Li, N., Zhang, B. & Popescu, V. (2017)
Intermediate shadow maps for interactive many-light
rendering. The Visual Computer: International
Journal of Computer Graphics. 34 (10), 1415-1426.
Available from: doi: 10.1007/s00371-017-1449-7

Wang, X., Tong, X., Lin, S., Hu, S., Guo, B. & Shum, H.-Y.
(2004) Generalized displacement maps. In: Proceed-
ings of the Fifteenth Eurographics conference
on Rendering Techniques, EGSR04, 21-23 June
2004, Norrköping, Sweden. Goslar, The Euro-
graphics Association. pp. 227–233. Available
from: doi: 10.2312/egwr/egsr04/227-233

Welsh, T. (2004) Parallax mapping with offset limiting: A
per-pixel approximation of uneven surfaces.
Infiscape Corporation. Available from: https://
page.mi.fu-berlin.de/block/htw-lehre/
wise2015_2016/bel_und_rend/skripte/welsh2004.
pdf [Accessed 20th September 2024].

Wen, H. (2023) A Novel Ray Tracing Method Based
on Unity Scriptable Render Pipeline and DirectX
Raytracing. In: 2023 15th International Confer-
ence on Computer Research and Development,
ICCRD, 10-12 January 2023, Hangzhou, China.
Piscataway, IEEE. pp. 156–160. Available from:
doi: 10.1109/ICCRD56364.2023.10079997

Wu, C., Xia, Y., Xu, Z., Liu, L., Tang, X., Chen, Q. &
Xu, F. (2024) Mathematical modelling for high
precision ray tracing in optical design. Applied
Mathematical Modelling. 128, 103–122. Avail-
able from: doi: 10.1016/j.apm.2024.01.012

Yang, M. & Jia, J. (2023) Implementation and Optimiza-
tion of Hardware-Universal Ray-tracing Underlying
Algorithm Based on GPU Programming. In: 2023 6th
International Conference on Artificial Intelligence
and Big Data, ICAIBD, 26-29 May 2023, Chengdu,
China. Piscataway, IEEE. pp. 171-178. Available
from: doi: 10.1109/ICAIBD57115.2023.10206260

Yerex, K. & Jagersand, M. (2004) Displacement Map-
ping with Ray-casting in Hardware. In: Barzel, R.
(ed.) ACM Siggraph 2004 Sketches, SIGGRAPH’04,
8-12 August 2004, Los Angeles, California. New
York, Association for Computing Machinery. p. 149.
Available from: doi: 10.1145/1186223.1186410

Zellmann, S., Wald, I., Barbosa, J., Dermici, S., Sahistan,
A. & Güdükbay, U. (2022) Hybrid Image-/Data-Par-
allel Rendering Using Island Parallelism. In: Pro-
ceedings - 2022 IEEE 12th Symposium on Large Data
Analysis and Visualization, LDAV, 16 October 2022,
Oklahoma City, Oklahoma. Piscataway, IEEE. Avail-
able from: doi: 10.1109/LDAV57265.2022.9966396

https://dl.acm.org/doi/10.1145/1111411.1111422
https://dl.acm.org/doi/10.1145/1186822.1073292
https://www.sciencedirect.com/science/article/abs/pii/S1524070318300390
https://academic.oup.com/jcde/article/7/1/30/5809440
https://jged.uns.ac.rs/index.php/jged/article/view/443
https://www.semanticscholar.org/paper/Interval-Mapping-Risser-Shah/d16d9da41ec53b604e15976b0615ad3993c67edc#citing-papers
https://www.semanticscholar.org/paper/Interval-Mapping-Risser-Shah/d16d9da41ec53b604e15976b0615ad3993c67edc#citing-papers
https://www.semanticscholar.org/paper/Interval-Mapping-Risser-Shah/d16d9da41ec53b604e15976b0615ad3993c67edc#citing-papers
https://www.semanticscholar.org/paper/Interval-Mapping-Risser-Shah/d16d9da41ec53b604e15976b0615ad3993c67edc#citing-papers
https://dl.acm.org/doi/10.1145/1185657.1185830
https://dl.acm.org/doi/10.1145/3543861
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14873
https://dl.acm.org/doi/10.1145/1201775.882272#tab-contributors
https://dl.acm.org/doi/abs/10.1007/s00371-017-1449-7
https://diglib.eg.org/items/703fc834-30a6-46dc-b766-70de034c68db
https://page.mi.fu-berlin.de/block/htw-lehre/wise2015_2016/bel_und_rend/skripte/welsh2004.pdf
https://page.mi.fu-berlin.de/block/htw-lehre/wise2015_2016/bel_und_rend/skripte/welsh2004.pdf
https://page.mi.fu-berlin.de/block/htw-lehre/wise2015_2016/bel_und_rend/skripte/welsh2004.pdf
https://page.mi.fu-berlin.de/block/htw-lehre/wise2015_2016/bel_und_rend/skripte/welsh2004.pdf
https://ieeexplore.ieee.org/document/10079997
https://www.sciencedirect.com/science/article/abs/pii/S0307904X2400012X
https://ieeexplore.ieee.org/abstract/document/10206260
https://dl.acm.org/doi/10.1145/1186223.1186410
https://ieeexplore.ieee.org/document/9966396

62

© 2025 Authors. Published by the University of Novi Sad, Faculty of Technical Sciences, Department of Graphic
Engineering and Design. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution license 3.0 Serbia (http://creativecommons.org/licenses/by/3.0/rs/).

